Discriminator Varieties of Double-Heyting Algebras

Christopher Taylor

Supervised by Dr. Tomasz Kowalski and Emer. Prof. Brian Davey

Department of Mathematics and Statistics La Trobe University

8th ANZMC 2014

Pseudocomplements

Let *L* be a bounded distributive lattice and let $x \in L$.

• The *pseudocomplement* of x, denoted x^* , is the largest element z such that $z \wedge x = 0$. Equivalently,

$$x \wedge z = 0 \iff z \leq x^*$$

 A Heyting algebra is a bounded distributive lattice with an additional operation →, known as the relative pseudocomplement, where → satisfies the following equivalence

$$X \land Z \leq Y \iff Z \leq X \to Y$$

• In a Heyting algebra, we can define $x^* := x \to 0$.

Pseudocomplements

Let *L* be a bounded distributive lattice and let $x \in L$.

• The *pseudocomplement* of x, denoted x^* , is the largest element z such that $z \wedge x = 0$. Equivalently,

$$x \wedge z = 0 \iff z \leq x^*$$

 A Heyting algebra is a bounded distributive lattice with an additional operation →, known as the relative pseudocomplement, where → satisfies the following equivalence

$$x \land z \le y \iff z \le x \to y$$

• In a Heyting algebra, we can define $x^* := x \to 0$.

Pseudocomplements

Let *L* be a bounded distributive lattice and let $x \in L$.

• The *pseudocomplement* of x, denoted x^* , is the largest element z such that $z \wedge x = 0$. Equivalently,

$$x \wedge z = 0 \iff z \leq x^*$$

 A Heyting algebra is a bounded distributive lattice with an additional operation →, known as the relative pseudocomplement, where → satisfies the following equivalence

$$X \land Z \leq Y \iff Z \leq X \rightarrow Y$$

• In a Heyting algebra, we can define $x^* := x \to 0$.

Heyting Algebras

ullet Recall, the operation o satisfies the following equivalence

$$X \land Z \leq Y \iff Z \leq X \rightarrow Y$$

- Alternatively, a Heyting algebra is an algebra ⟨H, ∨, ∧, →, 0, 1⟩ where
 - \bigcirc $\langle H, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice
 - $2 x \rightarrow x \approx 1$
 - \bigcirc $X \land (X \rightarrow Y) \approx X \land Y$
- Thus the class of Heyting algebras forms an equational class

Heyting Algebras

Recall, the operation → satisfies the following equivalence

$$X \land Z \leq Y \iff Z \leq X \rightarrow Y$$

- Alternatively, a Heyting algebra is an algebra $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ where
 - \bigcirc $\langle H, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice
 - $x \rightarrow x \approx 1$
- Thus the class of Heyting algebras forms an equational class

Heyting Algebras

Recall, the operation → satisfies the following equivalence

$$X \land Z \leq Y \iff Z \leq X \rightarrow Y$$

- Alternatively, a Heyting algebra is an algebra $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ where
 - \bigcirc $\langle H, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice
 - $x \rightarrow x \approx 1$
- Thus the class of Heyting algebras forms an equational class

Dual Heyting algebras

 A dual Heyting Algebra is simply the dual of a Heyting algebra. The dual of → is written – and satisfies the following equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• We also define the *dual pseudocomplement*, x^+ , to be the smallest element z such that $x \lor z = 1$. Equivalently,

$$x \lor z = 1 \iff z \ge x^+$$

• In a dual Heyting algebra, we can define $x^+ := 1 - x$.

Dual Heyting algebras

 A dual Heyting Algebra is simply the dual of a Heyting algebra. The dual of → is written — and satisfies the following equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• We also define the *dual pseudocomplement*, x^+ , to be the smallest element z such that $x \lor z = 1$. Equivalently,

$$x \lor z = 1 \iff z \ge x^+$$

• In a dual Heyting algebra, we can define $x^+ := 1 - x$.

Dual Heyting algebras

 A dual Heyting Algebra is simply the dual of a Heyting algebra. The dual of → is written — and satisfies the following equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• We also define the *dual pseudocomplement*, x^+ , to be the smallest element z such that $x \lor z = 1$. Equivalently,

$$x \lor z = 1 \iff z \ge x^+$$

• In a dual Heyting algebra, we can define $x^+ := 1 - x$.

Double-Heyting algebras

- An algebra $\langle H, \vee, \wedge, \rightarrow, -, 0, 1 \rangle$ is a double-Heyting algebra if
 - $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra
 - $\langle H, \vee, \wedge, -, 0, 1 \rangle$ is a dual Heyting algebra

The Discriminator Term

• An algebra A is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term t(x, y, z) where

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}$$

• Example: finite fields of order *p*, we have

$$t(x, y, z) = z + (x - z)(y - x)^{p-1}$$

A discriminator variety is an equational class where there
is a term t that is a discriminator term on every subdirectly
irreducible member of the class

The Discriminator Term

• An algebra A is called a discriminator algebra if it has a discriminator term, i.e. a term t(x, y, z) where

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}$$

Example: finite fields of order p, we have

$$t(x, y, z) = z + (x - z)(y - x)^{p-1}$$

A discriminator variety is an equational class where there
is a term t that is a discriminator term on every subdirectly
irreducible member of the class

The Discriminator Term

 An algebra A is called a discriminator algebra if it has a discriminator term, i.e. a term t(x, y, z) where

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}$$

Example: finite fields of order p, we have

$$t(x, y, z) = z + (x - z)(y - x)^{p-1}$$

A discriminator variety is an equational class where there
is a term t that is a discriminator term on every subdirectly
irreducible member of the class

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

Lemma

$$\chi > \chi^{+*} > \chi^{+*+*} > \dots > \chi^{n(+*)} > \dots$$

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

Lemma

$$\chi > \chi^{+*} > \chi^{+*+*} > \dots > \chi^{n(+*)} > \dots$$

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

Lemma

$$x \ge x^{+*} \ge x^{+*+*} \ge \dots \ge x^{n(+*)} \ge \dots$$

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

Lemma

$$x \ge x^{+*} \ge x^{+*+*} \ge \dots \ge x^{n(+*)} \ge \dots$$

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

Lemma

$$x > x^{+*} > x^{+*+*} > \cdots > x^{n(+*)} > \cdots$$

- For a set $F \subseteq H$ we say F is a filter if
 - F is an up-set
 - F is closed under the operation \land
- If F is also closed under the term operation +* then we say
 F is a normal filter on H
- For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

- For a set $F \subseteq H$ we say F is a filter if
 - F is an up-set
 - F is closed under the operation \land
- If F is also closed under the term operation +* then we say
 F is a normal filter on H
- For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

- For a set $F \subseteq H$ we say F is a filter if
 - F is an up-set
 - F is closed under the operation \wedge
- If F is also closed under the term operation +* then we say
 F is a normal filter on H
- For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

- For a set $F \subseteq H$ we say F is a filter if
 - F is an up-set
 - F is closed under the operation \land
- If F is also closed under the term operation +* then we say
 F is a normal filter on H
- For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

Congruences are determined by normal filters

- Let NF(H) denote the lattice of normal filters of H
- For any $F \in NF(H)$ define the congruence $\theta(F)$ by

$$(x,y) \in \theta(F)$$
 iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map $\theta : NF(H) \rightarrow Con(H)$ as given above is an isomorphism.

Congruences are determined by normal filters

- Let NF(H) denote the lattice of normal filters of H
- For any $F \in NF(H)$ define the congruence $\theta(F)$ by

$$(x,y) \in \theta(F)$$
 iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map $\theta : NF(H) \rightarrow Con(H)$ as given above is an isomorphism.

Congruences are determined by normal filters

- Let NF(H) denote the lattice of normal filters of H
- For any $F \in NF(H)$ define the congruence $\theta(F)$ by

$$(x,y) \in \theta(F)$$
 iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map $\theta : NF(H) \rightarrow Con(H)$ as given above is an isomorphism.

Simple implies finite range of +*

Lemma

Let H be a double-Heyting algebra. If H is simple, then for every $x \in H$ with $x \neq 1$ there exists some $n_x < \omega$ where $x^{n_x(+*)} = 0$.

Proof.

If H is simple there can only be two normal filters on H. In particular, for any $x \in H$ with $x \neq 1$, we have

$$N(x) = H$$

$$\iff 0 \in N(x)$$

$$\iff (\exists n_x < \omega) \ 0 \in x^{n_x(+*)}$$

as
$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

The class \mathcal{D}_n

• The class \mathcal{D}_n is the equational class of double-Heyting algebras satisfying the following equation H

$$x^{(n+1)(+*)} = x^{n(+*)}$$

The class \mathcal{D}_n

Theorem

 \mathcal{D}_n is a discriminator variety for every $n < \omega$

Proof sketch.

We omit the proof that if $H \in \mathcal{D}_n$ is subdirectly irreducible, then

$$x^{n(+*)} = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Put $x \leftrightarrow y := (x \to y) \land (y \to x)$. The discriminator term is

$$[X \wedge (X \leftrightarrow Y)^{n(+*)+}] \vee [Z \wedge (X \leftrightarrow Y)^{n(+*)}]$$

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let $\mathcal V$ be an equational class of double-Heyting algebras. Then the following are equivalent.

- V is a discriminator variety
- 2 V is semisimple
- ③ $V \subseteq D_n$ for some $n < \omega$

- An equational class $\mathcal K$ is said to be *semisimple* if every subdirectly irreducible algebra in $\mathcal K$ is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let V be an equational class of double-Heyting algebras. Then the following are equivalent.

- V is a discriminator variety
- 2 V is semisimple
- ③ $V \subseteq D_n$ for some $n < \omega$

- An equational class $\mathcal K$ is said to be *semisimple* if every subdirectly irreducible algebra in $\mathcal K$ is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let V be an equational class of double-Heyting algebras. Then the following are equivalent.

- 1 V is a discriminator variety
- 2 V is semisimple
- ③ $V \subseteq D_n$ for some $n < \omega$

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let $\mathcal V$ be an equational class of double-Heyting algebras. Then the following are equivalent.

- V is a discriminator variety
- V is semisimple
- **3** $\mathcal{V} \subseteq \mathcal{D}_n$ for some $n < \omega$