Discriminator Varieties of Double-Heyting Algebras

Christopher Taylor

Supervised by Dr. Tomasz Kowalski and Emer. Prof. Brian Davey

Department of Mathematics and Statistics La Trobe University

8th ANZMC 2014

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă

[Heyting algebras \(and their cousins\)](#page-3-0) [Discriminator varieties](#page-11-0)

Pseudocomplements

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

The *pseudocomplement* of *x*, denoted *x* ∗ , is the largest element *z* such that $z \wedge x = 0$. Equivalently,

$x \wedge z = 0 \iff z \leq x^*$

A *Heyting algebra* is a bounded distributive lattice with an additional operation →, known as the *relative pseudocomplement*, where \rightarrow satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \to y
$$

In a Heyting algebra, we can define $x^* := x \to 0$.

K ロ ト K 御 ト K ヨ ト K

[Heyting algebras \(and their cousins\)](#page-3-0) [Discriminator varieties](#page-11-0)

Pseudocomplements

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

The *pseudocomplement* of *x*, denoted *x* ∗ , is the largest element *z* such that $z \wedge x = 0$. Equivalently,

$$
x\wedge z=0\iff z\leq x^*
$$

A *Heyting algebra* is a bounded distributive lattice with an additional operation →, known as the *relative pseudocomplement*, where \rightarrow satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \rightarrow y
$$

In a Heyting algebra, we can define $x^* := x \to 0$.

← ロ → → r 何 → →

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Pseudocomplements

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

The *pseudocomplement* of *x*, denoted *x* ∗ , is the largest element *z* such that $z \wedge x = 0$. Equivalently,

$$
x\wedge z=0\iff z\leq x^*
$$

A *Heyting algebra* is a bounded distributive lattice with an additional operation →, known as the *relative pseudocomplement*, where \rightarrow satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \rightarrow y
$$

In a Heyting algebra, we can define $x^* := x \rightarrow 0$.

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Heyting Algebras

• Recall, the operation \rightarrow satisfies the following equivalence

$x \wedge z \leq y \iff z \leq x \rightarrow y$

Alternatively, a Heyting algebra is an algebra $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ where

- $\bigoplus \langle H, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice
- 2 $X \rightarrow X \approx 1$

$$
\bullet \quad x \wedge (x \rightarrow y) \approx x \wedge y
$$

 (4) *x* \wedge $(y \rightarrow z) \approx$ *x* \wedge $[(x \wedge y) \rightarrow (x \wedge z)]$

$$
\mathbf{S} \ \ Z \wedge \left[(X \wedge y) \rightarrow X \right] \approx Z
$$

Thus the class of Heyting algebras forms an equational class

イロト イ押 トイヨ トイヨ トー

ă,

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Heyting Algebras

• Recall, the operation \rightarrow satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \rightarrow y
$$

Alternatively, a Heyting algebra is an algebra $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ where $\bigoplus \langle H, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice 2 $x \rightarrow x \approx 1$ 3 $\chi \wedge (x \to y) \approx x \wedge y$ \rightarrow *x* \wedge (*y* \rightarrow *z*) \approx *x* \wedge [(*x* \wedge *y*) \rightarrow (*x* \wedge *z*)] $\boxed{5}$ $Z \wedge [(X \wedge V) \rightarrow X] \approx Z$

Thus the class of Heyting algebras forms an equational class

イロメ イ押 メイヨメ イヨメ

E

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Heyting Algebras

• Recall, the operation \rightarrow satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \rightarrow y
$$

Alternatively, a Heyting algebra is an algebra $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ where $\bigoplus \langle H, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice 2 $x \rightarrow x \approx 1$ 3 $\chi \wedge (x \to y) \approx x \wedge y$ $(X \wedge (V \rightarrow Z) \approx X \wedge [(X \wedge V) \rightarrow (X \wedge Z)]$ $\boxed{5}$ $Z \wedge [(X \wedge V) \rightarrow X] \approx Z$

Thus the class of Heyting algebras forms an equational class

イロト イ伊 トイヨ トイヨト

 $2Q$

∍

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Dual Heyting algebras

A *dual Heyting Algebra* is simply the dual of a Heyting algebra. The dual of \rightarrow is written – and satisfies the following equivalence

$$
x \vee z \geq y \iff z \geq y - x
$$

We also define the *dual pseudocomplement*, *x* ⁺, to be the smallest element *z* such that $x \vee z = 1$. Equivalently,

$$
x \vee z = 1 \iff z \geq x^+
$$

In a dual Heyting algebra, we can define $x^+ := 1 - x$.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Dual Heyting algebras

A *dual Heyting Algebra* is simply the dual of a Heyting algebra. The dual of \rightarrow is written – and satisfies the following equivalence

$$
x \vee z \geq y \iff z \geq y - x
$$

We also define the *dual pseudocomplement*, *x* ⁺, to be the smallest element *z* such that $x \vee z = 1$. Equivalently,

$$
x\vee z=1\iff z\geq x^+
$$

In a dual Heyting algebra, we can define $x^+ := 1 - x$.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Dual Heyting algebras

A *dual Heyting Algebra* is simply the dual of a Heyting algebra. The dual of \rightarrow is written – and satisfies the following equivalence

$$
x \vee z \geq y \iff z \geq y - x
$$

We also define the *dual pseudocomplement*, *x* ⁺, to be the smallest element *z* such that $x \vee z = 1$. Equivalently,

$$
x\vee z=1\iff z\geq x^+
$$

In a dual Heyting algebra, we can define $x^+ := 1 - x$.

4 ロ) (何) (日) (日)

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

Double-Heyting algebras

- **•** An algebra $\langle H, \vee, \wedge, \rightarrow, -, 0, 1 \rangle$ is a *double-Heyting algebra* if
	- **•** $\langle H, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a *Heyting algebra*
	- **•** $\langle H, \vee, \wedge, -, 0, 1 \rangle$ is a *dual Heyting algebra*

イロメ イ押 メイヨメ イヨメ

ă,

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-13-0)

The Discriminator Term

An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}
$$

Example: finite fields of order *p*, we have

$$
t(x, y, z) = z + (x - z)(y - x)^{p-1}
$$

A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-13-0)

The Discriminator Term

An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}
$$

Example: finite fields of order *p*, we have

$$
t(x, y, z) = z + (x - z)(y - x)^{p-1}
$$

A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

[Heyting algebras \(and their cousins\)](#page-1-0) [Discriminator varieties](#page-11-0)

The Discriminator Term

An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}
$$

Example: finite fields of order *p*, we have

$$
t(x, y, z) = z + (x - z)(y - x)^{p-1}
$$

A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

[Normal filters](#page-18-0) [Simple double-Heyting algebras](#page-26-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 - x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 QQ э

[Normal filters](#page-18-0) [Simple double-Heyting algebras](#page-26-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 - x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

イロメ イ押 メイヨメ イヨメ

ă, QQ

[Normal filters](#page-18-0) [Simple double-Heyting algebras](#page-26-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

÷. QQ

[Normal filters](#page-18-0) [Simple double-Heyting algebras](#page-26-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of *x* ∈ *H* is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x\geq x^{+*}\geq x^{+*+*}\geq\cdots\geq x^{n(+*)}\geq\ldots
$$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

÷.

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- Recall that the *pseudocomplement* of $x \in H$ is given by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

Lemma

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

÷.

Normal filters

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

Let *H* be a double-Heyting algebra.

- For a set *F* ⊆ *H* we say *F* is a filter if
	- *F* is an up-set
	- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*

For any *x* ∈ *H*, the normal filter generated by *x* is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

4 ロ ト ィ 何 ト ィ ヨ

Normal filters

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

Let *H* be a double-Heyting algebra.

- For a set *F* ⊆ *H* we say *F* is a filter if
	- *F* is an up-set
	- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*

For any *x* ∈ *H*, the normal filter generated by *x* is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

4 ロ ト ィ 何 ト ィ ヨ

Normal filters

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

Let *H* be a double-Heyting algebra.

- For a set *F* ⊆ *H* we say *F* is a filter if
	- *F* is an up-set
	- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*

• For any $x \in H$, the normal filter generated by x is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

4 ロ ト ィ 何 ト ィ ヨ

Normal filters

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

Let *H* be a double-Heyting algebra.

- For a set *F* ⊆ *H* we say *F* is a filter if
	- *F* is an up-set
	- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*

For any *x* ∈ *H*, the normal filter generated by *x* is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

4 ロ ト ィ *同* ト ィ ヨ

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

Congruences are determined by normal filters

Let NF(*H*) denote the lattice of normal filters of *H*

• For any $F \in \text{NF}(H)$ define the congruence $\theta(F)$ by

$(x, y) \in \theta(F)$ iff $x \wedge f = y \wedge f$ for some $f \in F$

The map θ : NF(*H*) \rightarrow Con(*H*) *as given above is an isomorphism.*

Chris Taylor [Discriminator Varieties of Double-Heyting Algebras](#page-0-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Congruences are determined by normal filters

- Let NF(*H*) denote the lattice of normal filters of *H*
- For any $F \in \text{NF}(H)$ define the congruence $\theta(F)$ by

 $(x, y) \in \theta(F)$ iff $x \wedge f = y \wedge f$ for some $f \in F$

The map θ : NF(*H*) \rightarrow Con(*H*) *as given above is an isomorphism.*

イロメ イ押 メイヨメ イヨメ

Congruences are determined by normal filters

- Let NF(*H*) denote the lattice of normal filters of *H*
- For any $F \in \text{NF}(H)$ define the congruence $\theta(F)$ by

 $(x, y) \in \theta(F)$ iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map θ : NF(*H*) \rightarrow Con(*H*) *as given above is an isomorphism.*

イロメ イ押 メイヨメ イヨメ

 QQ

[Normal filters](#page-14-0) [Simple double-Heyting algebras](#page-26-0)

Simple implies finite range of $^{+*}$

Lemma

Let H be a double-Heyting algebra. If H is simple, then for every $x \in H$ *with* $x \neq 1$ *there exists some* $n_x < \omega$ *where* $x^{n_x(+)} = 0$ *.*

Proof.

If *H* is simple there can only be two normal filters on *H*. In particular, for any $x \in H$ with $x \neq 1$, we have

$$
N(x) = H
$$

\n
$$
\iff 0 \in N(x)
$$

\n
$$
\iff (\exists n_x < \omega) \ 0 \in x^{n_x(+*)}
$$

as $N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+)}$

[The class](#page-27-0) D*n* [The main result](#page-29-0)

The class D*ⁿ*

• The class \mathcal{D}_n is the equational class of double-Heyting algebras satisfying the following equation *H*

$$
x^{(n+1)(+*)}=x^{n(+*)}
$$

イロメ イ押 メイヨメ イヨメ

÷.

[The class](#page-27-0) D*n* [The main result](#page-29-0)

The class D*ⁿ*

Theorem

 D_n *is a discriminator variety for every n* $< \omega$

Proof sketch.

We omit the proof that if $H \in \mathcal{D}_n$ is subdirectly irreducible, then

$$
x^{n(+*)} = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}
$$

Put $x \leftrightarrow y := (x \rightarrow y) \land (y \rightarrow x)$. The discriminator term is

$$
[x\wedge(x\leftrightarrow y)^{n(+*)+}]\vee[z\wedge(x\leftrightarrow y)^{n(+*)}]
$$

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

[The class](#page-27-0) D*n* [The main result](#page-32-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- **•** It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- **•** For double-Heyting algebras, it is true

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subset \mathcal{D}_n$ for some $n < \omega$

4 ロ ト ィ *同* ト

[The class](#page-27-0) D*n* [The main result](#page-32-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- **•** For double-Heyting algebras, it is true

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subset \mathcal{D}_n$ for some $n < \omega$

4 ロ ト ィ *同* ト

[The class](#page-27-0) D*n* [The main result](#page-32-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
	- $\mathcal{V} \subset \mathcal{D}_n$ for some $n < \omega$

4 ロ ト ィ *同* ト

[The class](#page-27-0) D*n* [The main result](#page-29-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subset \mathcal{D}_n$ for some $n < \omega$

ă