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Pseudocomplements

Let L be a bounded distributive lattice and let x ∈ L.
The pseudocomplement of x , denoted x∗, is the largest
element z such that z ∧ x = 0. Equivalently,

x ∧ z = 0 ⇐⇒ z ≤ x∗

A Heyting algebra is a bounded distributive lattice with an
additional operation→, known as the relative
pseudocomplement, where→ satisfies the following
equivalence

x ∧ z ≤ y ⇐⇒ z ≤ x → y

In a Heyting algebra, we can define x∗ := x → 0.
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Heyting Algebras

Recall, the operation→ satisfies the following equivalence

x ∧ z ≤ y ⇐⇒ z ≤ x → y

Alternatively, a Heyting algebra is an algebra
〈H,∨,∧,→,0,1〉 where

1 〈H,∨,∧,0,1〉 is a bounded distributive lattice
2 x → x ≈ 1
3 x ∧ (x → y) ≈ x ∧ y
4 x ∧ (y → z) ≈ x ∧ [(x ∧ y)→ (x ∧ z)]
5 z ∧ [(x ∧ y)→ x ] ≈ z

Thus the class of Heyting algebras forms an equational
class
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Dual Heyting algebras

A dual Heyting Algebra is simply the dual of a Heyting
algebra. The dual of→ is written − and satisfies the
following equivalence

x ∨ z ≥ y ⇐⇒ z ≥ y − x

We also define the dual pseudocomplement, x+, to be the
smallest element z such that x ∨ z = 1. Equivalently,

x ∨ z = 1 ⇐⇒ z ≥ x+

In a dual Heyting algebra, we can define x+ := 1− x .
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Double-Heyting algebras

An algebra 〈H,∨,∧,→,−,0,1〉 is a double-Heyting algebra
if

〈H,∨,∧,→,0,1〉 is a Heyting algebra
〈H,∨,∧,−,0,1〉 is a dual Heyting algebra
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The Discriminator Term

An algebra A is called a discriminator algebra if it has a
discriminator term, i.e. a term t(x , y , z) where

t(x , y , z) =

{
x if x 6= y
z otherwise

Example: finite fields of order p, we have

t(x , y , z) = z + (x − z)(y − x)p−1

A discriminator variety is an equational class where there
is a term t that is a discriminator term on every subdirectly
irreducible member of the class
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The +∗ operation

Let H be a double-Heyting algebra.
Recall that the pseudocomplement of x ∈ H is given by
x∗ := x → 0
Dually, the dual pseudocomplement of x ∈ H is given by
x+ := 1− x
We set x0(+∗) = x , then define x (n+1)(+∗) := (xn(+∗))+∗

Lemma
For any x we have

x ≥ x+∗ ≥ x+∗+∗ ≥ · · · ≥ xn(+∗) ≥ . . .
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Normal filters

Let H be a double-Heyting algebra.
For a set F ⊆ H we say F is a filter if

F is an up-set
F is closed under the operation ∧

If F is also closed under the term operation +∗ then we say
F is a normal filter on H
For any x ∈ H, the normal filter generated by x is given by

N(x) =
⋃

m∈ω
↑xm(+∗)
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Congruences are determined by normal filters

Let NF(H) denote the lattice of normal filters of H
For any F ∈ NF(H) define the congruence θ(F ) by

(x , y) ∈ θ(F ) iff x ∧ f = y ∧ f for some f ∈ F

Theorem
The map θ : NF(H)→ Con(H) as given above is an
isomorphism.
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Simple implies finite range of +∗

Lemma
Let H be a double-Heyting algebra. If H is simple, then for every
x ∈ H with x 6= 1 there exists some nx < ω where xnx (+∗) = 0.

Proof.
If H is simple there can only be two normal filters on H. In
particular, for any x ∈ H with x 6= 1, we have

N(x) = H
⇐⇒ 0 ∈ N(x)

⇐⇒ (∃nx < ω) 0 ∈ xnx (+∗)

as N(x) =
⋃

m∈ω ↑xm(+∗)
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The class Dn

The class Dn is the equational class of double-Heyting
algebras satisfying the following equation H

x (n+1)(+∗) = xn(+∗)
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The class Dn

Theorem
Dn is a discriminator variety for every n < ω

Proof sketch.
We omit the proof that if H ∈ Dn is subdirectly irreducible, then

xn(+∗) =

{
1 if x = 1
0 otherwise

Put x ↔ y := (x → y) ∧ (y → x). The discriminator term is

[x ∧ (x ↔ y)n(+∗)+] ∨ [z ∧ (x ↔ y)n(+∗)]

Chris Taylor Discriminator Varieties of Double-Heyting Algebras



Background
Congruences in Double-Heyting Algebras

Discriminator Varieties in Double-Heyting Algebras

The class Dn
The main result

The main result

An equational class K is said to be semisimple if every
subdirectly irreducible algebra in K is simple.
It is well-known that every discriminator variety is
semisimple. In general, the converse is not true.
For double-Heyting algebras, it is true

Theorem
Let V be an equational class of double-Heyting algebras. Then
the following are equivalent.

1 V is a discriminator variety

2 V is semisimple

3 V ⊆ Dn for some n < ω
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