Discriminator Varieties of Double-Heyting Algebras

Christopher Taylor

Supervised by Dr. Tomasz Kowalski and Emer. Prof. Brian Davey

Department of Mathematics and Statistics La Trobe University

Algebra and Substructural Logics 5

[Definitions](#page-4-0) [Discriminator varieties](#page-5-0)

Definitions

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

• The *relative pseudocomplement* operation $x \rightarrow y$ satisfies the following equivalence

 $x \wedge z \leq y \iff z \leq x \rightarrow y$

Dually, the *dual relative pseudocomplement* operation *y* − *x* (sometimes written *x* \leftarrow *y*) satisfies the equivalence

$$
x \vee z \geq y \iff z \geq y - x
$$

A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

イロト イ団 トイヨ トイヨ トー

[Definitions](#page-4-0) [Discriminator varieties](#page-5-0)

Definitions

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

• The *relative pseudocomplement* operation $x \rightarrow y$ satisfies the following equivalence

$$
x\wedge z\leq y\iff z\leq x\rightarrow y
$$

Dually, the *dual relative pseudocomplement* operation *y* − *x* (sometimes written *x* \leftarrow *y*) satisfies the equivalence

$$
x \vee z \geq y \iff z \geq y - x
$$

A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

K ロ ト K 何 ト K ヨ ト K ヨ ト

[Definitions](#page-4-0) [Discriminator varieties](#page-5-0)

Definitions

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

• The *relative pseudocomplement* operation $x \rightarrow y$ satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \rightarrow y
$$

Dually, the *dual relative pseudocomplement* operation *y* − *x* (sometimes written *x* \leftarrow *y*) satisfies the equivalence

$$
x\vee z\geq y\iff z\geq y-x
$$

A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Definitions](#page-1-0) [Discriminator varieties](#page-5-0)

Definitions

Let *L* be a bounded distributive lattice and let *x* ∈ *L*.

• The *relative pseudocomplement* operation $x \rightarrow y$ satisfies the following equivalence

$$
x \wedge z \leq y \iff z \leq x \rightarrow y
$$

Dually, the *dual relative pseudocomplement* operation *y* − *x* (sometimes written *x* \leftarrow *y*) satisfies the equivalence

$$
x \vee z \geq y \iff z \geq y - x
$$

A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

[Discriminator varieties](#page-7-0)

The Discriminator Term

An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}
$$

A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

[Discriminator varieties](#page-7-0)

The Discriminator Term

An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}
$$

A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Discriminator varieties](#page-5-0)

The Discriminator Term

An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}
$$

A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

[Normal filters](#page-12-0) [Simple double-Heyting algebras](#page-19-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of *x* ∈ *H* by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

イロメ 不優 トイヨメ イヨメー

[Normal filters](#page-12-0) [Simple double-Heyting algebras](#page-19-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of *x* ∈ *H* by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

イロト イ団 トイヨ トイヨ トー

[Normal filters](#page-12-0) [Simple double-Heyting algebras](#page-19-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of *x* ∈ *H* by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

イロト イ団 トイヨ トイヨ トー

[Normal filters](#page-12-0) [Simple double-Heyting algebras](#page-19-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of *x* ∈ *H* by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

B

イロト イ押 トイヨ トイヨ トー

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

The ⁺[∗] operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of *x* ∈ *H* by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by *x* ⁺ := 1 − *x*
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(++)} := (x^{n(++)})^{+*}$

Lemma

For any x we have

$$
x \geq x^{+*} \geq x^{+*+*} \geq \cdots \geq x^{n(+*)} \geq \ldots
$$

B

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

Normal filters

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

For a set *F* ⊆ *H* we say *F* is a filter if

- *F* is an up-set
- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*

• For any $x \in H$, the normal filter generated by x is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

Normal filters

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

- For a set *F* ⊆ *H* we say *F* is a filter if
	- *F* is an up-set
	- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*

• For any $x \in H$, the normal filter generated by x is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

Normal filters

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

- For a set *F* ⊆ *H* we say *F* is a filter if
	- *F* is an up-set
	- *F* is closed under the operation ∧
- If F is also closed under the term operation $^{+*}$ then we say *F* is a *normal filter on H*
- For any $x \in H$, the normal filter generated by x is given by

$$
N(x)=\bigcup_{m\in\omega}\uparrow x^{m(+*)}
$$

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

Congruences are determined by normal filters

Let NF(*H*) denote the lattice of normal filters of *H*

• For any $F \in \text{NF}(H)$ define the congruence $\theta(F)$ by

 $(x, y) \in \theta(F)$ iff $x \wedge f = y \wedge f$ for some $f \in F$

The map θ : NF(*H*) \rightarrow Con(*H*) *as given above is an isomorphism.*

イロト イ押 トイヨ トイヨ トー

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

Congruences are determined by normal filters

Let NF(*H*) denote the lattice of normal filters of *H*

• For any $F \in \text{NF}(H)$ define the congruence $\theta(F)$ by

$$
(x,y)\in \theta(F) \text{ iff } x\wedge f=y\wedge f \text{ for some } f\in F
$$

The map θ : NF(*H*) \rightarrow Con(*H*) *as given above is an isomorphism.*

イロト イ団 トイヨ トイヨ トー

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

Congruences are determined by normal filters

Let NF(*H*) denote the lattice of normal filters of *H*

• For any $F \in \text{NF}(H)$ define the congruence $\theta(F)$ by

$$
(x,y)\in \theta(F) \text{ iff } x\wedge f=y\wedge f \text{ for some } f\in F
$$

Theorem

The map θ : NF(*H*) \rightarrow Con(*H*) *as given above is an isomorphism.*

[Normal filters](#page-8-0) [Simple double-Heyting algebras](#page-19-0)

Simple if and only if ⁺[∗] has finite range

Lemma

Let H be a double-Heyting algebra. Then H is simple if and only if for every $x \in H$ *with* $x \neq 1$ *there exists some* $n_x < \omega$ *where* $x^{n_x(+)} = 0$.

Proof.

If *H* is simple there can only be two normal filters on *H*. In particular, for any $x \in H$ with $x \neq 1$, we have

$$
N(x) = H \iff 0 \in N(x)
$$

$$
\iff (\exists n_x < \omega) \ 0 \in \uparrow x^{n_x(+*)}
$$

as $N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+)}$

П

イロン イ何ン イヨン イヨン

[The class](#page-20-0) D*n* [The main result](#page-22-0)

The class D*ⁿ*

• The class \mathcal{D}_n is the equational class of double-Heyting algebras satisfying the following equation *H*

$$
x^{(n+1)(+*)}=x^{n(+*)}
$$

€

[The class](#page-20-0) D*n* [The main result](#page-22-0)

The class D*ⁿ*

Theorem

D*ⁿ is a discriminator variety for every n* < ω

Proof sketch.

We omit the proof that if $H \in \mathcal{D}_n$ is subdirectly irreducible, then

$$
x^{n(+*)} = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}
$$

Put $x \leftrightarrow y := (x \rightarrow y) \land (y \rightarrow x)$. The discriminator term is

$$
[x \wedge (x \leftrightarrow y)^{n(+*)+}] \vee [z \wedge (x \leftrightarrow y)^{n(+*)}]
$$

[The class](#page-20-0) D*n* [The main result](#page-25-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- **•** It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- **•** For double-Heyting algebras, it is true

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subseteq D_n$ for some $n < \omega$

[The class](#page-20-0) D*n* [The main result](#page-25-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- **•** For double-Heyting algebras, it is true

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subseteq D_n$ for some $n < \omega$

[The class](#page-20-0) D*n* [The main result](#page-25-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subseteq D_n$ for some $n < \omega$

[The class](#page-20-0) D*n* [The main result](#page-22-0)

The main result

- An equational class K is said to be *semisimple* if every subdirectly irreducible algebra in K is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- 3 $V \subset \mathcal{D}_n$ for some $n < \omega$

[The class](#page-20-0) D*n* [The main result](#page-22-0)

Some required lemmas

Lemma

Let H be a double-Heyting algebra and let x ∈ *H. Then for any k* < ω *we have*

$$
x^+\leq x^{k(+*)+k(+*)}
$$

Lemma

Let L be a complete distributive lattice and let α, β ∈ *L such that* α *is compact and* α *covers* β . *Put* $\Gamma := \{ \gamma \in L \mid \gamma \ge \beta \text{ and } \gamma \ngeq \alpha \}.$ Then $\bigvee \Gamma \in \Gamma$.

[The class](#page-20-0) D*n* [The main result](#page-22-0)

The main result

Theorem

Let V *be an equational class of double-Heyting algebras. Then the following are equivalent.*

- ¹ V *is a discriminator variety*
- ² V *is semisimple*
- **3** $V \subset \mathcal{D}_n$ for some $n < \omega$

э

イロト イ押 トイヨ トイヨ トー