Discriminator Varieties of Double-Heyting Algebras

Christopher Taylor

Supervised by Dr. Tomasz Kowalski and Emer. Prof. Brian Davey

Department of Mathematics and Statistics La Trobe University

Algebra and Substructural Logics 5

Definitions Discriminator varieties

Definitions

Let *L* be a bounded distributive lattice and let $x \in L$.

 The relative pseudocomplement operation x → y satisfies the following equivalence

 $x \wedge z \leq y \iff z \leq x \to y$

 Dually, the *dual relative pseudocomplement* operation y − x (sometimes written x ← y) satisfies the equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

・ロト ・ 理 ト ・ ヨ ト ・

Definitions Discriminator varieties

Definitions

Let *L* be a bounded distributive lattice and let $x \in L$.

 The *relative pseudocomplement* operation *x* → *y* satisfies the following equivalence

$$x \wedge z \leq y \iff z \leq x \rightarrow y$$

 Dually, the *dual relative pseudocomplement* operation y − x (sometimes written x ← y) satisfies the equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

ヘロト ヘ戸ト ヘヨト ヘヨト

Definitions Discriminator varieties

Definitions

Let *L* be a bounded distributive lattice and let $x \in L$.

 The *relative pseudocomplement* operation *x* → *y* satisfies the following equivalence

$$x \wedge z \leq y \iff z \leq x \to y$$

Dually, the *dual relative pseudocomplement* operation
 y − x (sometimes written x ← y) satisfies the equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

Definitions Discriminator varieties

Definitions

Let *L* be a bounded distributive lattice and let $x \in L$.

 The *relative pseudocomplement* operation *x* → *y* satisfies the following equivalence

$$x \wedge z \leq y \iff z \leq x \to y$$

Dually, the *dual relative pseudocomplement* operation
 y − x (sometimes written x ← y) satisfies the equivalence

$$x \lor z \ge y \iff z \ge y - x$$

• A *double-Heyting algebra* is a bounded distributive lattice with the additional operations defined above

Definitions Discriminator varieties

The Discriminator Term

• An algebra *A* is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term *t*(*x*, *y*, *z*) where

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}$$

• A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

ヘロト ヘ戸ト ヘヨト ヘヨト

Definitions Discriminator varieties

The Discriminator Term

An algebra A is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term t(x, y, z) where

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}$$

• A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

Definitions Discriminator varieties

The Discriminator Term

An algebra A is called a *discriminator algebra* if it has a *discriminator term*, i.e. a term t(x, y, z) where

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{otherwise} \end{cases}$$

• A *discriminator variety* is an equational class where there is a term *t* that is a discriminator term on every subdirectly irreducible member of the class

Normal filters Simple double-Heyting algebras

The +* operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of $x \in H$ by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

_emma

For any x we have

$$x \ge x^{+*} \ge x^{+*+*} \ge \cdots \ge x^{n(+*)} \ge \ldots$$

イロン イボン イヨン イヨン

Normal filters Simple double-Heyting algebras

The +* operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of $x \in H$ by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

_emma

For any x we have

$$x \ge x^{+*} \ge x^{+*+*} \ge \cdots \ge x^{n(+*)} \ge \ldots$$

Normal filters Simple double-Heyting algebras

The ^{+*} operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of $x \in H$ by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

_emma

For any x we have

$$x \ge x^{+*} \ge x^{+*+*} \ge \cdots \ge x^{n(+*)} \ge \ldots$$

Normal filters Simple double-Heyting algebras

The +* operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of $x \in H$ by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

_emma

For any x we have

$$x \ge x^{+*} \ge x^{+*+*} \ge \cdots \ge x^{n(+*)} \ge \ldots$$

イロン イボン イヨン イヨン

Normal filters Simple double-Heyting algebras

The ^{+*} operation

Let *H* be a double-Heyting algebra.

- We can define the *pseudocomplement* of $x \in H$ by $x^* := x \to 0$
- Dually, the *dual pseudocomplement* of $x \in H$ is given by $x^+ := 1 x$
- We set $x^{0(+*)} = x$, then define $x^{(n+1)(+*)} := (x^{n(+*)})^{+*}$

Lemma

For any x we have

$$x \ge x^{+*} \ge x^{+*+*} \ge \cdots \ge x^{n(+*)} \ge \ldots$$

1

Normal filters

Normal filters Simple double-Heyting algebras

• For a set $F \subseteq H$ we say F is a filter if

- F is an up-set
- F is closed under the operation ∧
- If F is also closed under the term operation ^{+*} then we say
 F is a normal filter on H

• For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

Normal filters

Normal filters Simple double-Heyting algebras

- For a set $F \subseteq H$ we say F is a filter if
 - F is an up-set
 - F is closed under the operation ∧
- If F is also closed under the term operation ^{+*} then we say
 F is a normal filter on H

• For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

Normal filters

Normal filters Simple double-Heyting algebras

- For a set $F \subseteq H$ we say F is a filter if
 - F is an up-set
 - F is closed under the operation ∧
- If F is also closed under the term operation ^{+*} then we say
 F is a normal filter on H
- For any $x \in H$, the normal filter generated by x is given by

$$N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$$

Normal filters Simple double-Heyting algebras

Congruences are determined by normal filters

Let NF(H) denote the lattice of normal filters of H

• For any $F \in NF(H)$ define the congruence $\theta(F)$ by

 $(x, y) \in \theta(F)$ iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map θ : NF(H) \rightarrow Con(H) as given above is an isomorphism.

ヘロト 人間 とくほとくほとう

Congruences are determined by normal filters

Let NF(H) denote the lattice of normal filters of H

• For any $F \in NF(H)$ define the congruence $\theta(F)$ by

$$(x, y) \in \theta(F)$$
 iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map θ : NF(H) \rightarrow Con(H) as given above is an isomorphism.

ヘロト 人間 ト ヘヨト ヘヨト

Congruences are determined by normal filters

Let NF(H) denote the lattice of normal filters of H

• For any $F \in NF(H)$ define the congruence $\theta(F)$ by

$$(x, y) \in \theta(F)$$
 iff $x \wedge f = y \wedge f$ for some $f \in F$

Theorem

The map θ : NF(H) \rightarrow Con(H) as given above is an isomorphism.

Normal filters Simple double-Heyting algebras

Simple if and only if +* has finite range

Lemma

Let H be a double-Heyting algebra. Then H is simple if and only if for every $x \in H$ with $x \neq 1$ there exists some $n_x < \omega$ where $x^{n_x(+*)} = 0$.

Proof.

If *H* is simple there can only be two normal filters on *H*. In particular, for any $x \in H$ with $x \neq 1$, we have

$$egin{aligned} \mathcal{N}(x) &= \mathcal{H} \iff \mathbf{0} \in \mathcal{N}(x) \ \iff (\exists n_x < \omega) \ \mathbf{0} \in \uparrow x^{n_x(+*)} \end{aligned}$$

as $N(x) = \bigcup_{m \in \omega} \uparrow x^{m(+*)}$

The class \mathcal{D}_n The main result

The class \mathcal{D}_n

• The class D_n is the equational class of double-Heyting algebras satisfying the following equation H

$$x^{(n+1)(+*)} = x^{n(+*)}$$

The class \mathcal{D}_n The main result

The class \mathcal{D}_n

Theorem

 \mathcal{D}_n is a discriminator variety for every $n < \omega$

Proof sketch.

We omit the proof that if $H \in D_n$ is subdirectly irreducible, then

$$x^{n(+*)} = egin{cases} 1 & ext{if } x = 1 \ 0 & ext{otherwise} \end{cases}$$

Put $x \leftrightarrow y := (x \rightarrow y) \land (y \rightarrow x)$. The discriminator term is

$$[x \land (x \leftrightarrow y)^{n(+*)+}] \lor [z \land (x \leftrightarrow y)^{n(+*)}]$$

<ロト < 回 > < 回 > < 回 > <

The class \mathcal{D}_n The main result

The main result

- An equational class \mathcal{K} is said to be *semisimple* if every subdirectly irreducible algebra in \mathcal{K} is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let \mathcal{V} be an equational class of double-Heyting algebras. Then the following are equivalent.

- 1) \mathcal{V} is a discriminator variety
- 2) ${\mathcal V}$ is semisimple
 - $\mathcal{V} \subseteq \mathcal{D}_n$ for some $n < \omega$

ヘロト ヘ戸ト ヘヨト ヘヨト

The class D_n The main result

The main result

- An equational class \mathcal{K} is said to be *semisimple* if every subdirectly irreducible algebra in \mathcal{K} is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let \mathcal{V} be an equational class of double-Heyting algebras. Then the following are equivalent.

- 1) \mathcal{V} is a discriminator variety
- 2 V is semisimple
 - $\mathcal{V} \subseteq \mathcal{D}_n$ for some $n < \omega$

ヘロト ヘ戸ト ヘヨト ヘヨト

The class D_n The main result

The main result

- An equational class \mathcal{K} is said to be *semisimple* if every subdirectly irreducible algebra in \mathcal{K} is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let \mathcal{V} be an equational class of double-Heyting algebras. Then the following are equivalent.

- 1) \mathcal{V} is a discriminator variety
- 2 V is semisimple
 - $\mathcal{V} \subseteq \mathcal{D}_n$ for some $n < \omega$

The class D_n The main result

The main result

- An equational class \mathcal{K} is said to be *semisimple* if every subdirectly irreducible algebra in \mathcal{K} is simple.
- It is well-known that every discriminator variety is semisimple. In general, the converse is not true.
- For double-Heyting algebras, it is true

Theorem

Let \mathcal{V} be an equational class of double-Heyting algebras. Then the following are equivalent.

- $\textcircled{0} \ \mathcal{V} \text{ is a discriminator variety}$
- 2 V is semisimple
- 3 $\mathcal{V} \subseteq \mathcal{D}_n$ for some $n < \omega$

The class \mathcal{D}_n The main result

Some required lemmas

Lemma

Let H be a double-Heyting algebra and let $x \in H$. Then for any $k < \omega$ we have

$$x^+ \leq x^{k(+*)+k(+*)}$$

Lemma

Let L be a complete distributive lattice and let $\alpha, \beta \in L$ such that α is compact and α covers β . Put $\Gamma := \{\gamma \in L \mid \gamma \geq \beta \text{ and } \gamma \not\geq \alpha\}$. Then $\bigvee \Gamma \in \Gamma$.

The class \mathcal{D}_n The main result

The main result

Theorem

Let \mathcal{V} be an equational class of double-Heyting algebras. Then the following are equivalent.

- V is a discriminator variety
- V is semisimple
- **3** $\mathcal{V} \subseteq \mathcal{D}_n$ for some $n < \omega$

くロト (過) (目) (日)