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Boolean lattices

Definition
Boolean lattice: a bounded distributive lattice B = 〈B;∨,∧,0,1〉 such
that every x ∈ B has a (unique) complement.

Theorem
Let L be a finite lattice. Then the following are equivalent.

1 L is a boolean lattice,
2 L ∼= P(B) for some finite set B,
3 L ∼= 2n for some n ≥ 0.
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Some other classifications

Birkhoff’s duality for finite distributive lattices
Stone’s duality for boolean algebras
Priestley’s duality for bounded distributive lattices
Every finite cyclic group is isomorphic to Zn for some n ∈ ω
Every finite abelian group is isomorphic to

∏n
i=0 Zqi where each qi

is a power of a prime
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Graphs

A graph:

A subgraph:
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The lattice of subgraphs

Let G = 〈V ,E〉 be a graph. The set of all subgraphs of G induces
a bounded distributive lattice, which we will call S(G), where

〈V1,E1〉 ∨ 〈V2,E2〉 = 〈V1 ∪ V2,E1 ∪ E2〉
〈V1,E1〉 ∧ 〈V2,E2〉 = 〈V1 ∩ V2,E1 ∩ E2〉.

Note that we permit the empty graph.
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Graph complements

↪→
Complement
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Pseudocomplementation
Let L be a lattice and let x ∈ L. Then x has a pseudocomplement if
there exists a largest element x∗ ∈ L such that x ∧ x∗ = 0.

Example: The lattice of open sets of a topological space X . If U is
an open set, then U∗ = int(X \ U).

Let L be a lattice and let x ∈ L. Then x has a dual pseudocomplement
if there exists a smallest element x+ ∈ L such that x ∨ x+ = 1.

Example: The lattice of closed sets of a topological space X . If C
is a closed set, then U+ = cl(X \ C).

Definition
An algebra A = 〈A;∨,∧,0,1, ∗,+〉 is a double p-algebra if 〈A;∨,∧,0,1〉
is a bounded lattice, and ∗ and + are the pseudocomplement and dual
pseudocomplement respectively.
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The algebra of subgraphs

Pseudocomplement
Take the set complement of the subgraph and abandon the extra
edges.

Dual pseudocomplement
Just add the missing vertices back

Formally, for a graph G = 〈V ,E〉 and a subgraph H = 〈V ′,E ′〉:

H∗ = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉
H+ = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉.
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Pseudocomplement
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Pseudocomplements are not bijective

Boolean lattices: no two elements share a complement
Double p-algebras: not true!

↪→

↪→
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Regular double p-algebras

Let A be an algebra. We say that A is congruence regular if, for all
α, β ∈ Con(A), we have

((∃x ∈ A) x/α = x/β) =⇒ α = β.

Example: groups

Theorem (Varlet, 1972)
Let A be a double p-algebra. Then the following are equivalent.

1 A is congruence regular.
2 (∀a,b ∈ A) if a∗ = b∗ and a+ = b+ then a = b.
3 (∀a,b ∈ A) a ∧ a+ ≤ b ∨ b∗.
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A well-behaved structure

Theorem
Let G = 〈V ,E〉 be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.

Proof.
Let A = 〈AV ,AE〉 and B = 〈BV ,BE〉 be subgraphs of G. Recall that for
a subgraph H = 〈V ′,E ′〉,

H∗ = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉 (1)
H+ = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉. (2)

Assume A∗ = B∗ and A+ = B+. Then from (1) we have V\AV = V\BV
and from (2) we have E\AE = E\BE . Hence, A = B.
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Are graphs enough?

→
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Are multigraphs enough?
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Incidence structures

Definition
An incidence structure is a triple 〈P,L, I〉 where P is a set of points, L is
a set of lines and I ⊆ P × L is an incidence relation describing which
points are incident to which lines.

Example
Let P = {1,2,3}, L = {x , y , z,a,b}, and let

I = {1,2,3} × {x , y}
∪ {1,2} × {z}
∪ {(1,a), (1,b)}
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Point-preserving substructures

Definition
Let G = 〈P,L, I〉 be an incidence structure. A point-preserving
substructure of G is a pair 〈P ′,L′〉 such that

1 P ′ ⊆ P and L′ ⊆ L,
2 for all ` ∈ L′, if (p, `) ∈ I then p ∈ P ′.

The incidence relation is defined implicitly from G.

Let S(G) denote the set of all point-preserving substructures of a
structure G. This induces a double p-algebra in a similar way to
graphs, where

〈P ′,L′〉∗ = 〈P\P ′, {` ∈ L\L′ | (∀p ∈ P) (p, `) ∈ I =⇒ p ∈ P\P ′}〉
〈P ′,L′〉+ = 〈P\P ′ ∪ {p ∈ P | (∃` ∈ L\L′) (p, `) ∈ I},L\L′〉.
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The main result (finite version)

Theorem
Let L be a finite lattice. Then the following are equivalent.

1 L is a boolean lattice,
2 L ∼= P(B) for some set B,
3 L ∼= 2n for some n ≥ 0.

Theorem (Taylor, 2015)
Let L be a finite lattice. Then the following are equivalent.

1 L is (the underlying lattice of) a regular double p-algebra,
2 L ∼= S(G) for some incidence structure G,
3 L ∼= 2n × S(G) for some n ≥ 0 and some incidence structure G.
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An infinite counterexample

The finite-cofinite algebra of N is a boolean algebra.
I FC(N) := {S ⊆ N | S is finite or N \ S is finite}.

FC(N) is countable.
Every powerset lattice has cardinality 2X for some set X .
Thus FC(N) is not a powerset algebra.
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The characterisation of powerset algebras

Theorem
Let B be a boolean lattice. Then the following are equivalent.

1 B ∼= P(X ) for some set X .
2 B is complete and atomic.
3 B is complete and completely distributive.
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The main result

Theorem (Taylor, 2015)
Let A be a regular double p-algebra. Then the following are equivalent.

1 A ∼= P(B)× S(G) for some set B and some incidence structure G.
2 A ∼= S(G) for some incidence structure G.
3 A is complete, completely distributive and doubly atomic.

Theorem (Taylor, 2015)
Let A be a regular double p-algebra. Then there is an incidence
structure G such that A is isomorphic to a subalgebra of S(G).
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