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Boolean lattices

Definition
Boolean lattice: a bounded distributive lattice B = (B; V, A, 0, 1) such
that every x € B has a (unique) complement.
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Boolean lattices

Definition
Boolean lattice: a bounded distributive lattice B = (B; V, A, 0, 1) such
that every x € B has a (unique) complement. )

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is a boolean lattice,
Q L = P(B) for some finite set B,
Q@ L=2" forsomen>0. )
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Some other classifications

Birkhoff’s duality for finite distributive lattices

Stone’s duality for boolean algebras

Priestley’s duality for bounded distributive lattices

Every finite cyclic group is isomorphic to Z, for some n € w

Every finite abelian group is isomorphic to []7_, Zq, where each g;
is a power of a prime
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The lattice of subgraphs

@ Let G= (V, E) be a graph. The set of all subgraphs of G induces
a bounded distributive lattice, which we will call S(G), where

<V1,E1>\/ <V2’E2> = <V1 U V27E1 UE2>
(Vi, Eq) AN (Vo, BE2) = (Vi N Vo, By N Ey).

@ Note that we permit the empty graph.
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Graph complements
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Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element x* € L such that x A x* = 0. J

Chris Taylor Algebras of incidence structures AustMS 2015 11/25



Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element x* € L such that x A x* = 0. J

@ Example: The lattice of open sets of a topological space X. If U is
an open set, then U* = int(X \ U).

Chris Taylor Algebras of incidence structures AustMS 2015 11/25



Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element x* € L such that x A x* = 0. J

@ Example: The lattice of open sets of a topological space X. If U is
an open set, then U* = int(X \ U).

Let L be a lattice and let x € L. Then x has a dual pseudocomplement
if there exists a smallest element x™ € L such that x vV x* = 1. J

Chris Taylor Algebras of incidence structures AustMS 2015 11/25



Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element x* € L such that x A x* = 0. J

@ Example: The lattice of open sets of a topological space X. If U is
an open set, then U* = int(X \ U).

Let L be a lattice and let x € L. Then x has a dual pseudocomplement
if there exists a smallest element x™ € L such that x vV x* = 1. J

@ Example: The lattice of closed sets of a topological space X. If C
is a closed set, then Ut =cl(X '\ C).

Chris Taylor Algebras of incidence structures AustMS 2015 11/25



Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element x* € L such that x A x* = 0. J

@ Example: The lattice of open sets of a topological space X. If U is
an open set, then U* = int(X \ U).

Let L be a lattice and let x € L. Then x has a dual pseudocomplement
if there exists a smallest element x™ € L such that x vV x* = 1. J

@ Example: The lattice of closed sets of a topological space X. If C
is a closed set, then Ut =cl(X '\ C).

Definition

An algebra A = (A; V, A, 0,1, %, +) is a double p-algebra if (A;V,A,0,1)
is a bounded lattice, and * and ™ are the pseudocomplement and dual
pseudocomplement respectively.

Chris Taylor Algebras of incidence structures AustMS 2015 11/25




The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra
edges.
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The algebra of subgraphs

Pseudocomplement
Take the set complement of the subgraph and abandon the extra
edges.

Dual pseudocomplement
Just add the missing vertices back )

@ Formally, for a graph G = (V, E) and a subgraph H = (V' E’):

H* = (V\V',{ec E\E'| (Vx € &) x € V\V'})
HT = (VW\V'u{veV|(3BecE\E)vce},E\E).
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Pseudocomplements are not bijective

Boolean lattices: no two elements share a complement
Double p-algebras: not true! J
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Regular double p-algebras

@ Let A be an algebra. We say that A is congruence regular if, for all
a, 8 € Con(A), we have
(BxeA)x/a=x/8) = a=7p.

@ Example: groups
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Regular double p-algebras

@ Let A be an algebra. We say that A is congruence regular if, for all
a, 8 € Con(A), we have

(Bx e A)x/a=x/P) = a=p.

@ Example: groups

Theorem (Varlet, 1972)

Let A be a double p-algebra. Then the following are equivalent.
@ A is congruence regular.
Q (Va,be A)ifa* =b* anda™ = bt thena=b.
Q (vabe A ana" <bvb*.
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A well-behaved structure

Theorem

Let G= (V,E) be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.
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A well-behaved structure

Theorem

Let G= (V,E) be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.

Proof.
Let A= (Ay,Ag) and B = (By, Be) be subgraphs of G. Recall that for
a subgraph H = (V'  E'),
H* = (V\V',{ee E\E' | (Vx € ) x € V\V'}) (1)
Ht =(VW\V'u{veV|(BecE\E)vce},E\E. (2)

Assume A* = B* and A" = BT. Then from (1) we have V\Ay = V\By
and from (2) we have E\Ag = E\Bg. Hence, A= B. O

v
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Are graphs enough?
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Are multigraphs enough?

-
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Incidence structures

Definition
An incidence structure is a triple (P, L, I) where P is a set of points, L is

asetof linesand / C P x L is an incidence relation describing which
points are incident to which lines.

Example
Let P={1,2,3}, L = {x,y, z,a, b}, and let

I={1,2,3} x {x,y}
u{1,2} x {z}
u{(1,a),(1,b)}
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Incidence structures

Example
Let P = {17253}’ L = {Xayvz’ avb}! and Iet

I={1,2,3} x {x,y}
u{1,2} x{z}
u{(1,a),(1,0)}
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Point-preserving substructures

Definition

Let G = (P, L, ) be an incidence structure. A point-preserving
substructure of G is a pair (P, L) such that

Q@ P CPandl’'CL,
Q forall¢el,if (p,¢) € Ithenp e P'.
The incidence relation is defined implicitly from G.
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Point-preserving substructures

Definition
Let G = (P, L, /) be an incidence structure. A point-preserving
substructure of G is a pair (P, L) such that
Q@ P CPandl’'CL,
Q forall¢el,if (p,¢) € Ithenp e P'.
The incidence relation is defined implicitly from G.

Let S(G) denote the set of all point-preserving substructures of a
structure G. This induces a double p-algebra in a similar way to
graphs, where

(P, =(P\P,{teL\L'| (Vvpe P)(p,l) el = pe P\P})
(P LYt =(P\PPu{peP|(3teclL\L)(pt)ecl}L\L).
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The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is aboolean lattice,
©Q L = P(B) for some set B,
Q@ L=2" forsomen>0.
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The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is aboolean lattice,
©Q L = P(B) for some set B,
Q@ L=2" forsomen>0.

Theorem (Taylor, 2015)

Let L be a finite lattice. Then the following are equivalent.

@ L is (the underlying lattice of) a regular double p-algebra,

Q L = S(G) for some incidence structure G,

Q L=2" x S(G) for some n > 0 and some incidence structure G.

v
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An infinite counterexample

@ The finite-cofinite algebra of N is a boolean algebra.
» FC(N):={SCN| Sisfinite or N\ Sis finite}.
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An infinite counterexample

@ The finite-cofinite algebra of N is a boolean algebra.
» FC(N) :={S CN| Sisfinite or N\ Sis finite}.
@ FC(N) is countable.
@ Every powerset lattice has cardinality 2 for some set X.
@ Thus FC(N) is not a powerset algebra.
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The characterisation of powerset algebras

Theorem

Let B be a boolean lattice. Then the following are equivalent.
Q@ B = P(X) for some set X.
@ B is complete and atomic.
© B is complete and completely distributive.
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The main result

Theorem (Taylor, 2015)

Let A be a regular double p-algebra. Then the following are equivalent.
@ A = P(B) x S(G) for some set B and some incidence structure G.
@ A = S§(G) for some incidence structure G.
© A is complete, completely distributive and doubly atomic.
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The main result

Theorem (Taylor, 2015)

Let A be a regular double p-algebra. Then the following are equivalent.
@ A = P(B) x S(G) for some set B and some incidence structure G.
@ A = S§(G) for some incidence structure G.
© A is complete, completely distributive and doubly atomic.

Theorem (Taylor, 2015)

Let A be a regular double p-algebra. Then there is an incidence
structure G such that A is isomorphic to a subalgebra of S(G).
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