Algebras of incidence structures: representing regular double p-algebras

Christopher Taylor

La Trobe University

AustMS 2015

Acknowledgements

Thanks to the AustMS Student Support Scheme for providing additional funding to help attend the conference.

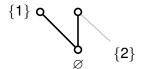
 $\mathcal{P}\bigl(\{1,2,3\}\bigr) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

 $\mathcal{P}\bigl(\{1,2,3\}\bigr) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

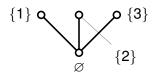
o Ø

 $\mathcal{P}\bigl(\{1,2,3\}\bigr) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

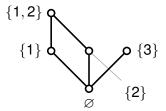
 $\mathcal{P}\bigl(\{1,2,3\}\bigr) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$



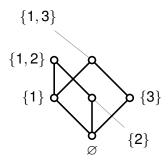
 $\mathcal{P}(\{1,2,3\}) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$



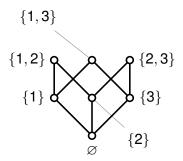
$$\mathcal{P}(\{1,2,3\}) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$$



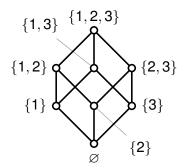
$$\mathcal{P}(\{1,2,3\}) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$$



$$\mathcal{P}(\{1,2,3\}) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$$



 $\mathcal{P}(\{1,2,3\}) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$



Definition

Boolean lattice: a bounded distributive lattice $\mathbf{B} = \langle B; \lor, \land, 0, 1 \rangle$ such that every $x \in B$ has a (unique) complement.

Definition

Boolean lattice: a bounded distributive lattice $\mathbf{B} = \langle B; \lor, \land, 0, 1 \rangle$ such that every $x \in B$ has a (unique) complement.

Theorem

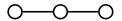
Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- 2 $L \cong \mathcal{P}(B)$ for some finite set *B*,
- 3 $L \cong \mathbf{2}^n$ for some $n \ge 0$.

Some other classifications

- Birkhoff's duality for finite distributive lattices
- Stone's duality for boolean algebras
- Priestley's duality for bounded distributive lattices
- Every finite cyclic group is isomorphic to \mathbb{Z}_n for some $n \in \omega$
- Every finite abelian group is isomorphic to ∏ⁿ_{i=0} ℤ_{q_i} where each q_i is a power of a prime

A graph:



A graph:

0-0-0

A subgraph:

ο

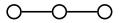
A graph:

0--0--0

A subgraph:

Ο

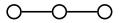
A graph:



A subgraph:

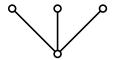
Ο

A graph:

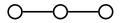


A subgraph:

Ο

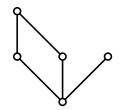


A graph:

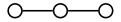


A subgraph:

0 0

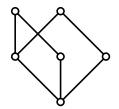


A graph:

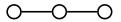


A subgraph:

0 0

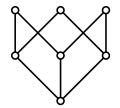


A graph:

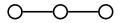


A subgraph:

0 0

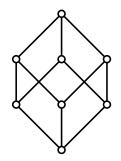


A graph:

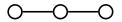


A subgraph:

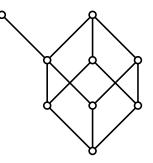
0 0 0

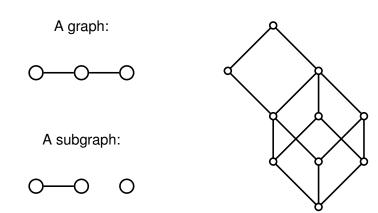


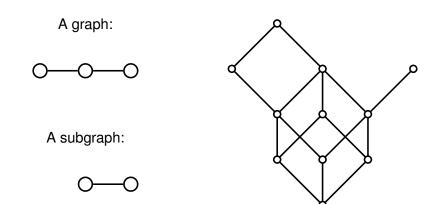
A graph:

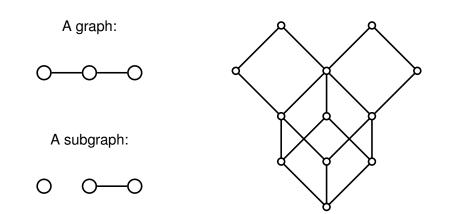


A subgraph:



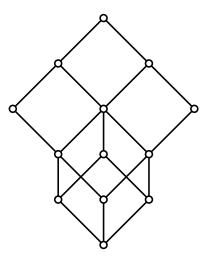






A graph:

A subgraph:

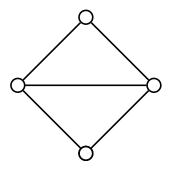


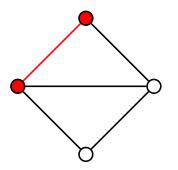
The lattice of subgraphs

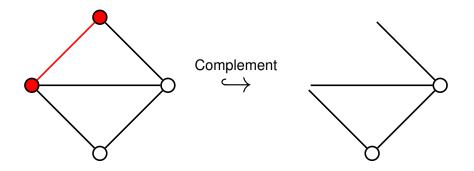
 Let G = (V, E) be a graph. The set of all subgraphs of G induces a bounded distributive lattice, which we will call S(G), where

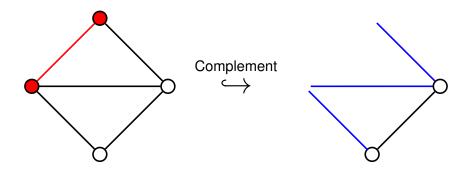
$$\langle V_1, E_1 \rangle \lor \langle V_2, E_2 \rangle = \langle V_1 \cup V_2, E_1 \cup E_2 \rangle \langle V_1, E_1 \rangle \land \langle V_2, E_2 \rangle = \langle V_1 \cap V_2, E_1 \cap E_2 \rangle.$$

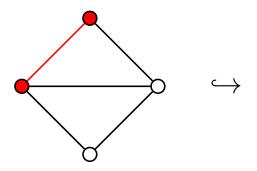
• Note that we permit the empty graph.

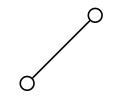


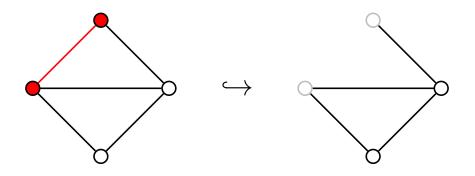


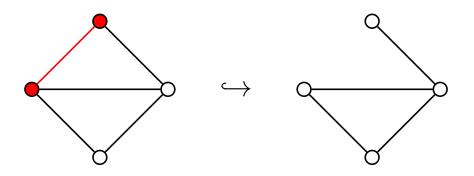












Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

 Example: The lattice of open sets of a topological space X. If U is an open set, then U^{*} = int(X \ U).

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

 Example: The lattice of open sets of a topological space X. If U is an open set, then U^{*} = int(X \ U).

Let *L* be a lattice and let $x \in L$. Then *x* has a *dual pseudocomplement* if there exists a smallest element $x^+ \in L$ such that $x \lor x^+ = 1$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

 Example: The lattice of open sets of a topological space X. If U is an open set, then U^{*} = int(X \ U).

Let *L* be a lattice and let $x \in L$. Then *x* has a *dual pseudocomplement* if there exists a smallest element $x^+ \in L$ such that $x \lor x^+ = 1$.

Example: The lattice of closed sets of a topological space X. If C is a closed set, then U⁺ = cl(X \ C).

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

 Example: The lattice of open sets of a topological space X. If U is an open set, then U^{*} = int(X \ U).

Let *L* be a lattice and let $x \in L$. Then *x* has a *dual pseudocomplement* if there exists a smallest element $x^+ \in L$ such that $x \lor x^+ = 1$.

Example: The lattice of closed sets of a topological space X. If C is a closed set, then U⁺ = cl(X \ C).

Definition

An algebra $\mathbf{A} = \langle \mathbf{A}; \lor, \land, 0, 1, *, + \rangle$ is a *double p-algebra* if $\langle \mathbf{A}; \lor, \land, 0, 1 \rangle$ is a bounded lattice, and * and + are the pseudocomplement and dual pseudocomplement respectively.

The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra edges.

The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra edges.

Dual pseudocomplement

Just add the missing vertices back

The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra edges.

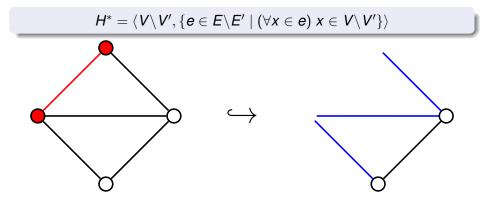
Dual pseudocomplement

Just add the missing vertices back

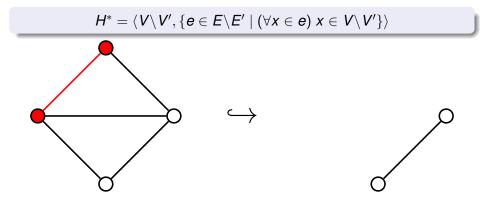
• Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

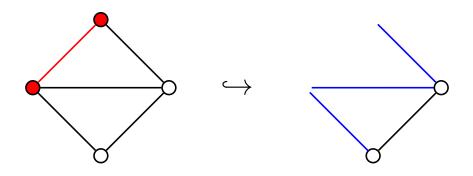
$$\begin{split} H^* &= \langle V \setminus V', \{ e \in E \setminus E' \mid (\forall x \in e) \; x \in V \setminus V' \} \rangle \\ H^+ &= \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \; v \in e \}, E \setminus E' \rangle. \end{split}$$

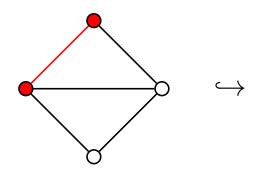
Pseudocomplement

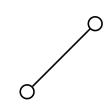


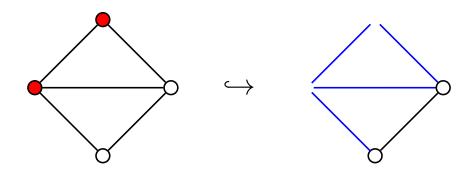
Pseudocomplement

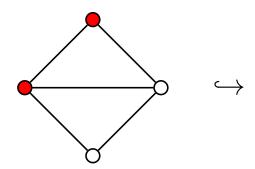


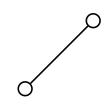












Regular double p-algebras

• Let **A** be an algebra. We say that **A** is *congruence regular* if, for all $\alpha, \beta \in Con(\mathbf{A})$, we have

$$((\exists x \in A) x / \alpha = x / \beta) \implies \alpha = \beta.$$

• Example: groups

Regular double p-algebras

• Let **A** be an algebra. We say that **A** is *congruence regular* if, for all $\alpha, \beta \in Con(\mathbf{A})$, we have

$$((\exists x \in A) \ x/\alpha = x/\beta) \implies \alpha = \beta.$$

Example: groups

Theorem (Varlet, 1972)

Let A be a double p-algebra. Then the following are equivalent.

- A is congruence regular.
- ② (∀a, b ∈ A) if $a^* = b^*$ and $a^+ = b^+$ then a = b.

$$\bigcirc (\forall a, b \in A) \ a \land a^+ \le b \lor b^*.$$

A well-behaved structure

Theorem

Let $G = \langle V, E \rangle$ be a graph. Then S(G) is (the underlying lattice of) a regular double p-algebra.

A well-behaved structure

Theorem

Let $G = \langle V, E \rangle$ be a graph. Then S(G) is (the underlying lattice of) a regular double p-algebra.

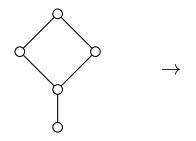
Proof.

Let $A = \langle A_V, A_E \rangle$ and $B = \langle B_V, B_E \rangle$ be subgraphs of *G*. Recall that for a subgraph $H = \langle V', E' \rangle$,

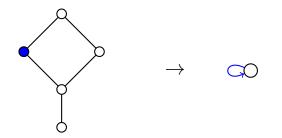
$$H^* = \langle V \setminus V', \{ e \in E \setminus E' \mid (\forall x \in e) \ x \in V \setminus V' \} \rangle$$
(1)

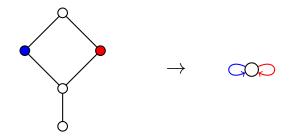
$$H^{+} = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$$
(2)

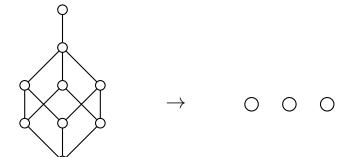
Assume $A^* = B^*$ and $A^+ = B^+$. Then from (1) we have $V \setminus A_V = V \setminus B_V$ and from (2) we have $E \setminus A_E = E \setminus B_E$. Hence, A = B.

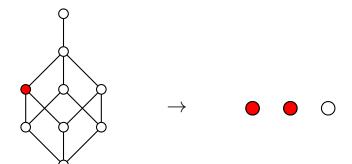


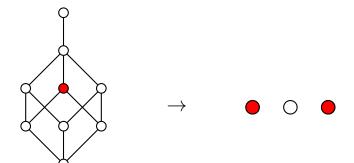


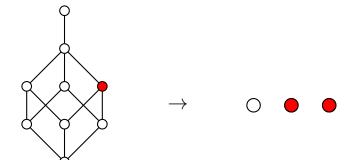


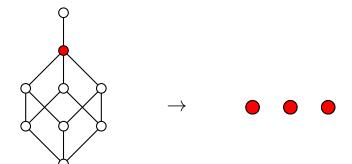


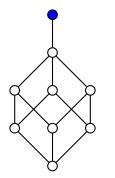












 \rightarrow

Incidence structures

Definition

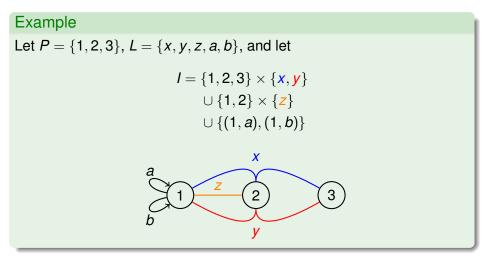
An *incidence structure* is a triple $\langle P, L, I \rangle$ where *P* is a set of points, *L* is a set of lines and $I \subseteq P \times L$ is an incidence relation describing which points are incident to which lines.

Example

Let $P = \{1, 2, 3\}$, $L = \{x, y, z, a, b\}$, and let

$$I = \{1, 2, 3\} \times \{x, y\}$$
$$\cup \{1, 2\} \times \{z\}$$
$$\cup \{(1, a), (1, b)\}$$

Incidence structures



Point-preserving substructures

Definition

Let $G = \langle P, L, I \rangle$ be an incidence structure. A *point-preserving* substructure of *G* is a pair $\langle P', L' \rangle$ such that

$$\bigcirc P' \subseteq P \text{ and } L' \subseteq L,$$

2) for all
$$\ell \in L'$$
, if $(p, \ell) \in I$ then $p \in P'$.

The incidence relation is defined implicitly from G.

Point-preserving substructures

Definition

Let $G = \langle P, L, I \rangle$ be an incidence structure. A *point-preserving* substructure of *G* is a pair $\langle P', L' \rangle$ such that

$$1 P' \subseteq P \text{ and } L' \subseteq L,$$

2) for all
$$\ell \in L'$$
, if $(p, \ell) \in I$ then $p \in P'$.

The incidence relation is defined implicitly from *G*.

Let S(G) denote the set of all point-preserving substructures of a structure *G*. This induces a double p-algebra in a similar way to graphs, where

$$\langle P', L' \rangle^* = \langle P \setminus P', \{ \ell \in L \setminus L' \mid (\forall p \in P) \ (p, \ell) \in I \implies p \in P \setminus P' \} \rangle \langle P', L' \rangle^+ = \langle P \setminus P' \cup \{ p \in P \mid (\exists \ell \in L \setminus L') \ (p, \ell) \in I \}, L \setminus L' \rangle.$$

The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- 2 $L \cong \mathcal{P}(B)$ for some set B,
- 3 $L \cong \mathbf{2}^n$ for some $n \ge 0$.

The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- 2 $L \cong \mathcal{P}(B)$ for some set B,
- 3 $L \cong \mathbf{2}^n$ for some $n \ge 0$.

Theorem (Taylor, 2015)

Let L be a finite lattice. Then the following are equivalent.

- L is (the underlying lattice of) a regular double p-algebra,
- 2 $L \cong S(G)$ for some incidence structure G,
- **③** $L \cong \mathbf{2}^n \times \mathcal{S}(G)$ for some $n \ge 0$ and some incidence structure *G*.

• The *finite-cofinite algebra* of \mathbb{N} is a boolean algebra.

• $FC(\mathbb{N}) := \{ S \subseteq \mathbb{N} \mid S \text{ is finite or } \mathbb{N} \setminus S \text{ is finite} \}.$

- The *finite-cofinite algebra* of \mathbb{N} is a boolean algebra.
 - $FC(\mathbb{N}) := \{ S \subseteq \mathbb{N} \mid S \text{ is finite or } \mathbb{N} \setminus S \text{ is finite} \}.$
- $FC(\mathbb{N})$ is countable.

- The *finite-cofinite algebra* of \mathbb{N} is a boolean algebra.
 - $FC(\mathbb{N}) := \{ S \subseteq \mathbb{N} \mid S \text{ is finite or } \mathbb{N} \setminus S \text{ is finite} \}.$
- $FC(\mathbb{N})$ is countable.
- Every powerset lattice has cardinality 2^X for some set X.

- The *finite-cofinite algebra* of \mathbb{N} is a boolean algebra.
 - $FC(\mathbb{N}) := \{ S \subseteq \mathbb{N} \mid S \text{ is finite or } \mathbb{N} \setminus S \text{ is finite} \}.$
- $FC(\mathbb{N})$ is countable.
- Every powerset lattice has cardinality 2^X for some set X.
- Thus $FC(\mathbb{N})$ is not a powerset algebra.

The characterisation of powerset algebras

Theorem

Let B be a boolean lattice. Then the following are equivalent.

- $B \cong \mathcal{P}(X)$ for some set X.
- B is complete and atomic.
- B is complete and completely distributive.

The main result

Theorem (Taylor, 2015)

Let **A** be a regular double p-algebra. Then the following are equivalent.

- **1** $A \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set *B* and some incidence structure *G*.
- **2** $A \cong S(G)$ for some incidence structure *G*.
- A is complete, completely distributive and doubly atomic.

The main result

Theorem (Taylor, 2015)

Let A be a regular double p-algebra. Then the following are equivalent.

- **()** $A \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set *B* and some incidence structure *G*.
- **2** $A \cong S(G)$ for some incidence structure *G*.
- A is complete, completely distributive and doubly atomic.

Theorem (Taylor, 2015)

Let **A** be a regular double p-algebra. Then there is an incidence structure G such that **A** is isomorphic to a subalgebra of S(G).