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Relative complement of 12 with respect to 1 is equal to 1 ∨ 34.
More generally: relative complement of x with respect to y is y ∨ ¬x

...also known as x → y
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Logical interpretation

Implication:

p → q := ¬p ∨ q

Law of the excluded middle:

p ∨ ¬p = 1

Law of non-contradiction:

p ∧ ¬p = 0

George Boole
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Heyting algebras

Arend Heyting

An algebra of type 〈A;∨,∧,→,0,1〉 such
that:

I 〈A;∨,∧,0,1〉 is a bounded lattice
I → is a binary operation satisfying:

x ∧ y ≤ z ⇐⇒ x ≤ y → z

Quotients?
I Groups: normal subgroups
I Rings: ideals
I In general: congruences
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Filters

Definition
Let L be a lattice and let F ⊆ L. Then F is a filter provided that:

1 F is an upset, and,
2 if x , y ∈ F then x ∧ y ∈ F .

Fundamental theorem of Heyting algebras
Every congruence on a Heyting algebra arises from a filter.
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Expansions

Just as a “ring” is different to a “ring with identity”, different
operations in the signature make a different algebra

Example: 〈A;∨,∧,→, f ,g,h,0,1〉
Congruences must be compatible with f , g and h
Since they are also compatible with ∨, ∧,→, 0 and 1, they at least
correspond to some kind of filter

Theorem
Let F be a filter. Then F is compatible with a unary function f if and
only if

x ↔ y ∈ F =⇒ fx ↔ fy ∈ F ,

where x ↔ y = x → y ∧ y → x.
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Not entirely convenient

A filter F is compatible with 〈A;∨,∧,→, f ,g,h,0,1〉 if x ↔ y ∈ F
implies:

I fx ↔ fy ∈ F ,
I gx ↔ gy ∈ F , and
I hx ↔ hy ∈ F

We call a filter compatible with the entire algebra a normal filter

Definition
Let A be an expanded Heyting algebra and let t be a unary term in the
language of A. We say that t is a normal filter term on A if a filter is a
normal filter if and only if F is closed under t .

Example
The identity function is a normal filter term for Heyting algebras
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Examples

Definition
A unary map f is a (dual normal) operator if f (x ∧ y) = fx ∧ fy , and,
f1 = 1.

Theorem (“Folklore”)
Let A be a boolean algebra equipped with finitely many operators,
denoted f1, f2, . . . , fn. Then the term t, defined by

tx = f1x ∧ f2x ∧ . . . ∧ fnx

is a normal filter term on A.

Theorem (Sankappanavar, 1985)
Double-Heyting algebras possess a normal filter term.

Chris Taylor AustMS 2016 9 / 16
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Constructing normal filter terms

Let M denote the set of extra operations on a Heyting algebra

Hasimoto (2001) developed a construction that can be used to
construct normal filter terms
Let [M] denote the result of his construction – a unary map on the
underlying set

Lemma (T., 2016)
If [M] exists, and there exists a term t in the language of A such that
tx = [M]x, then t is a normal filter term.

Lemma (Hasimoto, 2001)
Let M = {f1, f2, . . . , fn} be a finite set of operators. Then [M] exists, and

[M]x = f1x ∧ f2x ∧ . . . ∧ fnx
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Constructing normal filter terms

Definition
A unary map f is an anti-operator if f (x ∧ y) = fx ∨ fy , and, f1 = 0. Let
¬x be the unary term defined by ¬x = x → 0.

Lemma (T., 2016)
Let f be an anti-operator on a Heyting algebra. Then [f ] exists, and

[f ]x = ¬fx

Example (Meskhi, 1982)
If A is a Heyting algebra with involution, i.e. a Heyting algebra
equipped with a single unary operation i that is a dual automorphism.
The map tx := ¬ix is a normal filter term on A.

Chris Taylor AustMS 2016 11 / 16
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The dual pseudocomplement

Example
Let A be an EHA. A unary operation ∼ is a dual pseudocomplement
operation if the following equivalence is satisfied for all x ∈ A:

x ∨ y = 1 ⇐⇒ y ≥ ∼x .

Corollary (Sankappanavar, 1985)
Let A be a dually pseudocomplemented Heyting algebra. Then ¬∼ is a
normal filter term on A.
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Subdirectly irreducibles

Lemma
Let A be an EHA, let t be a normal filter term on A, and let dx = x ∧ tx.

1 A is subdirectly irreducible if and only if there exists b ∈ A\{1}
such that for all x ∈ A\{1} there exists n ∈ ω such that dnx ≤ b.

2 A is simple if and only if for all x ∈ A\{1} there exists n ∈ ω such
that dnx = 0.
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Discriminator varieties

Definition
A variety V has definable principal congruences (DPC) if you can
define principal congruences by a first order formula. If this is done
with a finite conjunction of equations then V has EDPC.

Theorem (T., 2016)
Let V be a variety of EHAs with a common normal filter term t, and let
dx = x ∧ tx. Then the following are equivalent:

1 V has DPC,
2 V has EDPC,
3 V |= dn+1x = dnx for some n ∈ ω.
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Discriminator varieties

Definition
A variety is semisimple if every subdirectly irreducible algebra is
simple.
A variety is congruence permutable if for every pair of
congruences θ1, θ2 on every algebra, θ1 ◦ θ2 = θ2 ◦ θ1

A variety is a discriminator variety if there is a ternary term t in the
language of V such that t is a discriminator term on every
subdirectly irreducible member of V, i.e.,

t(x , y , z) =

{
x if x 6= y
z if x = y .
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Discriminator varieties

Theorem (Blok, Köhler and Pigozzi, 1984)
Let V be a variety of any signature. The following are equivalent:

1 V is semisimple, congruence permutable, and has EDPC.
2 V is a discriminator variety.

Theorem (T., 2016)
Let V be a variety of dually pseudocomplemented EHAs and assume
V has a normal filter term t. Then the following are equivalent.

1 V is semisimple.
2 V is a discriminator variety.

This generalises a result by Kowalski and Kracht (2006) for BAOs and
a result of mine (2015) to appear for double-Heyting algebras.
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