Expansions of dually pseudocomplemented Heyting algebras

Christopher Taylor

Supervised by Tomasz Kowalski and Brian Davey

AustMS 2016

Relative complement of 12 with respect to 1 is equal to 1 \vee 34.

Relative complement of 12 with respect to 1 is equal to $1 \vee 34$. More generally: relative complement of *x* with respect to *y* is $y \vee \neg x$

Relative complement of 12 with respect to 1 is equal to $1 \vee 34$. More generally: relative complement of *x* with respect to *y* is $y \vee \neg x$...also known as $x \rightarrow y$

Logical interpretation

• Implication:

 $p \rightarrow q := \neg p \vee q$

• Law of the excluded middle:

p ∨ ¬*p* = 1

• Law of non-contradiction:

$$
p \wedge \neg p = 0
$$

George Boole

Logical interpretation

• Implication:

 $p \rightarrow q := \neg p \vee q$

- o Law of the excluded middle. *p* ∨ ¬*p* = 1
- Law of non-contradiction:

$$
p \wedge \neg p = 0
$$

George Boole

Arend Heyting

- An algebra of type $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ such that:
	- $\blacktriangleright \langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
	- $\blacktriangleright \rightarrow$ is a binary operation satisfying:

$$
x \wedge y \leq z \iff x \leq y \to z
$$

Arend Heyting

- An algebra of type $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ such that:
	- \blacktriangleright $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
	- \rightarrow is a binary operation satisfying:

$$
x\wedge y\leq z\iff x\leq y\rightarrow z
$$

• Quotients?

Arend Heyting

- An algebra of type $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ such that:
	- \blacktriangleright $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
	- \rightarrow \rightarrow is a binary operation satisfying:

$$
x\wedge y\leq z\iff x\leq y\rightarrow z
$$

- Quotients?
	- \triangleright Groups: normal subgroups
	- \blacktriangleright Rings: ideals

Arend Heyting

- An algebra of type $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ such that:
	- $\blacktriangleright \langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
	- \rightarrow \rightarrow is a binary operation satisfying:

$$
x\wedge y\leq z\iff x\leq y\rightarrow z
$$

- **Quotients?**
	- \triangleright Groups: normal subgroups
	- \blacktriangleright Rings: ideals
	- \blacktriangleright In general: congruences

Filters

Definition

Let **L** be a lattice and let $F \subseteq L$. Then *F* is a *filter* provided that:

- **1** *F* is an upset, and,
- 2 if $x, y \in F$ then $x \wedge y \in F$.

Filters

Definition

Let **L** be a lattice and let $F \subset L$. Then F is a *filter* provided that:

- **1** *F* is an upset, and,
- ² if *x*, *y* ∈ *F* then *x* ∧ *y* ∈ *F*.

Fundamental theorem of Heyting algebras

Every congruence on a Heyting algebra arises from a filter.

Example

Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra

Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra

• Example:
$$
\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle
$$

- Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra
- **•** Example: $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$
- Congruences must be compatible with *f*, *g* and *h*

- Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra
- **•** Example: $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$
- Congruences must be compatible with *f*, *g* and *h*
- \bullet Since they are also compatible with \vee , \wedge , \rightarrow , 0 and 1, they at least correspond to *some kind* of filter

- Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra
- **•** Example: $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$
- Congruences must be compatible with *f*, *g* and *h*
- \bullet Since they are also compatible with \vee , \wedge , \rightarrow , 0 and 1, they at least correspond to *some kind* of filter

Theorem

Let F be a filter. Then F is compatible with a unary function f if and only if

$$
x \leftrightarrow y \in F \implies fx \leftrightarrow fy \in F,
$$

where $x \leftrightarrow y = x \rightarrow y \land y \rightarrow x$.

- A filter *F* is compatible with $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$ if $x \leftrightarrow y \in F$ implies:
	- \blacktriangleright *fx* ↔ *fy* ∈ *F*,
	- \rightarrow *gx* \Leftrightarrow *gy* \in *F*, and
	- **►** $hx \leftrightarrow hy \in F$

- A filter *F* is compatible with $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$ if $x \leftrightarrow y \in F$ implies:
	- \blacktriangleright *fx* ↔ *fy* ∈ *F*,
	- \rightarrow *gx* \Leftrightarrow *gy* \in *F*, and
	- **►** $hx \leftrightarrow hy \in F$

We call a filter compatible with the entire algebra a *normal filter*

- A filter *F* is compatible with $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$ if $x \leftrightarrow y \in F$ implies:
	- \blacktriangleright *fx* ↔ *fy* ∈ *F*,
	- \rightarrow *gx* \leftrightarrow *gy* \in *F*, and
	- \rightarrow *hx* ↔ *hy* ∈ *F*
- We call a filter compatible with the entire algebra a *normal filter*

Definition

Let **A** be an expanded Heyting algebra and let *t* be a unary term in the language of **A**. We say that *t* is a *normal filter term* on **A** if a filter is a normal filter if and only if *F* is closed under *t*.

- A filter *F* is compatible with $\langle A; \vee, \wedge, \rightarrow, f, g, h, 0, 1 \rangle$ if $x \leftrightarrow y \in F$ implies:
	- \blacktriangleright *fx* ↔ *fy* ∈ *F*,
	- \rightarrow *gx* \leftrightarrow *gy* \in *F*, and
	- **►** $hx \leftrightarrow hy \in F$
- We call a filter compatible with the entire algebra a *normal filter*

Definition

Let **A** be an expanded Heyting algebra and let *t* be a unary term in the language of **A**. We say that *t* is a *normal filter term* on **A** if a filter is a normal filter if and only if *F* is closed under *t*.

Example

The identity function is a normal filter term for Heyting algebras

Examples

Definition

A unary map *f* is a (dual normal) *operator* if $f(x \wedge y) = fx \wedge fy$, and, $f1 = 1$.

Examples

Definition

A unary map *f* is a (dual normal) *operator* if $f(x \wedge y) = fx \wedge fy$, and, $f1 = 1$.

Theorem ("Folklore")

Let **A** *be a boolean algebra equipped with finitely many operators, denoted f*₁, *f*₂, . . . , *f*_n. Then the term *t*, defined by

$$
tx = f_1x \wedge f_2x \wedge \ldots \wedge f_nx
$$

is a normal filter term on **A***.*

Examples

Definition

A unary map *f* is a (dual normal) *operator* if $f(x \wedge y) = fx \wedge fy$, and, $f1 = 1$.

Theorem ("Folklore")

Let **A** *be a boolean algebra equipped with finitely many operators, denoted f*₁, *f*₂, . . . , *f*_n. Then the term *t*, defined by

$$
tx = f_1x \wedge f_2x \wedge \ldots \wedge f_nx
$$

is a normal filter term on **A***.*

Theorem (Sankappanavar, 1985)

Double-Heyting algebras possess a normal filter term.

Let *M* denote the set of extra operations on a Heyting algebra

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms
- Let [*M*] denote the result of his construction a unary map on the underlying set

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms
- Let [*M*] denote the result of his construction a unary map on the underlying set

Lemma (T., 2016)

If [*M*] *exists, and there exists a term t in the language of* **A** *such that* $tx = [M]x$, then t is a normal filter term.

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms
- Let [*M*] denote the result of his construction a unary map on the underlying set

Lemma (T., 2016)

If [*M*] *exists, and there exists a term t in the language of* **A** *such that* $tx = [M]x$, then t is a normal filter term.

Lemma (Hasimoto, 2001)

Let $M = \{f_1, f_2, \ldots, f_n\}$ *be a finite set of operators. Then* [*M*] *exists, and*

$$
[M]x = f_1x \wedge f_2x \wedge \ldots \wedge f_nx
$$

Definition

A unary map *f* is an *anti-operator* if $f(x \wedge y) = fx \vee fy$, and, $f1 = 0$. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Definition

A unary map *f* is an *anti-operator* if $f(x \wedge y) = fx \vee fy$, and, $f1 = 0$. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Lemma (T., 2016)

Let f be an anti-operator on a Heyting algebra. Then [*f*] *exists, and*

$$
[f]x=\neg fx
$$

Definition

A unary map *f* is an *anti-operator* if $f(x \wedge y) = fx \vee fy$, and, $f1 = 0$. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Lemma (T., 2016)

Let f be an anti-operator on a Heyting algebra. Then [*f*] *exists, and*

$$
[f]x=\neg fx
$$

Example (Meskhi, 1982)

If **A** is a Heyting algebra with involution, i.e. a Heyting algebra equipped with a single unary operation *i* that is a dual automorphism. The map $tx := -ix$ is a normal filter term on **A**.

The dual pseudocomplement

Example

Let **A** be an EHA. A unary operation ∼ is a *dual pseudocomplement operation* if the following equivalence is satisfied for all $x \in A$:

 $x \vee y = 1 \iff y \geq \sim x$.

The dual pseudocomplement

Example

Let **A** be an EHA. A unary operation ∼ is a *dual pseudocomplement operation* if the following equivalence is satisfied for all $x \in A$:

x ∨ *y* = 1 \iff *y* ≥ ~*x*.

Corollary (Sankappanavar, 1985)

Let **A** *be a dually pseudocomplemented Heyting algebra. Then* ¬∼ *is a normal filter term on* **A***.*

Lemma

Let **A** *be an EHA, let t be a normal filter term on* **A***, and let* $dx = x \wedge tx$ *.*

- **1 A** *is subdirectly irreducible if and only if there exists* $b \in A \setminus \{1\}$ *such that for all* $x \in A \setminus \{1\}$ *there exists n* $\in \omega$ *such that* $d^n x < b$.
- ² **A** *is simple if and only if for all x* ∈ *A*\{1} *there exists n* ∈ ω *such that* $d^n x = 0$.

x

tx

Lemma

Let **A** *be an EHA, let t be a normal filter term on* **A***, and let* $dx = x \wedge tx$ *.*

- **1 A** *is subdirectly irreducible if and only if there exists* $b \in A \setminus \{1\}$ *such that for all* $x \in A \setminus \{1\}$ *there exists n* $\in \omega$ *such that* $d^n x < b$.
- ² **A** *is simple if and only if for all x* ∈ *A*\{1} *there exists n* ∈ ω *such that* $d^n x = 0$.

Definition

A variety V has *definable principal congruences* (DPC) if you can define principal congruences by a first order formula. If this is done with a finite conjunction of equations then V has EDPC.

Definition

A variety V has *definable principal congruences* (DPC) if you can define principal congruences by a first order formula. If this is done with a finite conjunction of equations then V has EDPC.

Theorem (T., 2016)

Let V *be a variety of EHAs with a common normal filter term t, and let* $dx = x \wedge tx$. Then the following are equivalent:

- ¹ V *has DPC,*
- ² V *has EDPC,*

$$
\bullet \ \ \mathcal{V} \models d^{n+1}x = d^n x \text{ for some } n \in \omega.
$$

Definition

- A variety is *semisimple* if every subdirectly irreducible algebra is simple.
- A variety is congruence permutable if for every pair of congruences θ_1, θ_2 on every algebra, $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$
- A variety is a discriminator variety if there is a ternary term *t* in the language of V such that *t* is a discriminator term on every subdirectly irreducible member of V , i.e.,

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{if } x = y. \end{cases}
$$

Theorem (Blok, Köhler and Pigozzi, 1984)

Let V *be a variety of any signature. The following are equivalent:*

- ¹ V *is semisimple, congruence permutable, and has EDPC.*
- ² V *is a discriminator variety.*

Theorem (Blok, Köhler and Pigozzi, 1984)

Let V *be a variety of any signature. The following are equivalent:*

- ¹ V *is semisimple, congruence permutable, and has EDPC.*
- ² V *is a discriminator variety.*

Theorem (T., 2016)

Let V *be a variety of dually pseudocomplemented EHAs and assume* V *has a normal filter term t. Then the following are equivalent.*

- ¹ V *is semisimple.*
- ² V *is a discriminator variety.*

This generalises a result by Kowalski and Kracht (2006) for BAOs and a result of mine (2015) to appear for double-Heyting algebras.