Expansions of dually pseudocomplemented Heyting algebras

Christopher Taylor

Supervised by Tomasz Kowalski and Brian Davey

AustMS 2016

Relative complement of 12 with respect to 1 is equal to $1 \lor 34$.

Relative complement of 12 with respect to 1 is equal to $1 \lor 34$. More generally: relative complement of *x* with respect to *y* is $y \lor \neg x$

Relative complement of 12 with respect to 1 is equal to $1 \lor 34$. More generally: relative complement of *x* with respect to *y* is $y \lor \neg x$...also known as $x \to y$

Logical interpretation

• Implication:

 $p \rightarrow q := \neg p \lor q$

• Law of the excluded middle:

 $p \vee \neg p = 1$

• Law of non-contradiction:

$$p \wedge \neg p = 0$$

George Boole

Logical interpretation

• Implication:

 $p \rightarrow q := \neg p \lor q$

- Law of the excluded middle: $p \lor \neg p = 1$
- Law of non-contradiction:

$$p \wedge \neg p = 0$$

George Boole

Arend Heyting

- An algebra of type ⟨A; ∨, ∧, →, 0, 1⟩ such that:
 - $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded lattice
 - \blacktriangleright \rightarrow is a binary operation satisfying:

$$x \wedge y \leq z \iff x \leq y \rightarrow z$$

Arend Heyting

- An algebra of type ⟨A; ∨, ∧, →, 0, 1⟩ such that:
 - $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
 - \blacktriangleright \rightarrow is a binary operation satisfying:

$$x \wedge y \leq z \iff x \leq y \rightarrow z$$

Quotients?

Arend Heyting

- An algebra of type ⟨A; ∨, ∧, →, 0, 1⟩ such that:
 - $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
 - \blacktriangleright \rightarrow is a binary operation satisfying:

$$x \wedge y \leq z \iff x \leq y \rightarrow z$$

- Quotients?
 - Groups: normal subgroups
 - Rings: ideals

Arend Heyting

- An algebra of type ⟨A; ∨, ∧, →, 0, 1⟩ such that:
 - $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded lattice
 - \blacktriangleright \rightarrow is a binary operation satisfying:

$$x \wedge y \leq z \iff x \leq y \rightarrow z$$

- Quotients?
 - Groups: normal subgroups
 - Rings: ideals
 - In general: congruences

Filters

Definition

Let **L** be a lattice and let $F \subseteq L$. Then F is a *filter* provided that:

- F is an upset, and,
- **2** if $x, y \in F$ then $x \land y \in F$.

Filters

Definition

Let **L** be a lattice and let $F \subseteq L$. Then F is a *filter* provided that:

- F is an upset, and,
- **2** if $x, y \in F$ then $x \land y \in F$.

Fundamental theorem of Heyting algebras

Every congruence on a Heyting algebra arises from a filter.

Example

• Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra

• Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra

• Example:
$$\langle A; \lor, \land, \rightarrow, f, g, h, 0, 1 \rangle$$

- Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra
- Example: $\langle A; \lor, \land, \rightarrow, f, g, h, 0, 1 \rangle$
- Congruences must be compatible with *f*, *g* and *h*

- Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra
- Example: $\langle A; \lor, \land, \rightarrow, f, g, h, 0, 1 \rangle$
- Congruences must be compatible with *f*, *g* and *h*
- Since they are also compatible with ∨, ∧, →, 0 and 1, they at least correspond to *some kind* of filter

- Just as a "ring" is different to a "ring with identity", different operations in the signature make a different algebra
- Example: $\langle A; \lor, \land, \rightarrow, f, g, h, 0, 1 \rangle$
- Congruences must be compatible with *f*, *g* and *h*
- Since they are also compatible with ∨, ∧, →, 0 and 1, they at least correspond to *some kind* of filter

Theorem

Let F be a filter. Then F is compatible with a unary function f if and only if

$$x \leftrightarrow y \in F \implies fx \leftrightarrow fy \in F,$$

where $x \leftrightarrow y = x \rightarrow y \wedge y \rightarrow x$.

- A filter F is compatible with ⟨A; ∨, ∧, →, f, g, h, 0, 1⟩ if x ↔ y ∈ F implies:
 - $fx \leftrightarrow fy \in F$,
 - $gx \leftrightarrow gy \in F$, and
 - $hx \leftrightarrow hy \in F$

- A filter F is compatible with ⟨A; ∨, ∧, →, f, g, h, 0, 1⟩ if x ↔ y ∈ F implies:
 - $fx \leftrightarrow fy \in F$,
 - $gx \leftrightarrow gy \in F$, and
 - $hx \leftrightarrow hy \in F$
- We call a filter compatible with the entire algebra a normal filter

- A filter F is compatible with ⟨A; ∨, ∧, →, f, g, h, 0, 1⟩ if x ↔ y ∈ F implies:
 - $fx \leftrightarrow fy \in F$,
 - $gx \leftrightarrow gy \in F$, and
 - $hx \leftrightarrow hy \in F$
- We call a filter compatible with the entire algebra a normal filter

Definition

Let **A** be an expanded Heyting algebra and let *t* be a unary term in the language of **A**. We say that *t* is a *normal filter term* on **A** if a filter is a normal filter if and only if *F* is closed under *t*.

- A filter F is compatible with ⟨A; ∨, ∧, →, f, g, h, 0, 1⟩ if x ↔ y ∈ F implies:
 - $fx \leftrightarrow fy \in F$,
 - $gx \leftrightarrow gy \in F$, and
 - $hx \leftrightarrow hy \in F$
- We call a filter compatible with the entire algebra a normal filter

Definition

Let **A** be an expanded Heyting algebra and let *t* be a unary term in the language of **A**. We say that *t* is a *normal filter term* on **A** if a filter is a normal filter if and only if *F* is closed under *t*.

Example

The identity function is a normal filter term for Heyting algebras

Examples

Definition

A unary map *f* is a (dual normal) *operator* if $f(x \land y) = fx \land fy$, and, f1 = 1.

Examples

Definition

A unary map *f* is a (dual normal) *operator* if $f(x \land y) = fx \land fy$, and, f1 = 1.

Theorem ("Folklore")

Let **A** be a boolean algebra equipped with finitely many operators, denoted f_1, f_2, \ldots, f_n . Then the term *t*, defined by

$$tx = f_1 x \wedge f_2 x \wedge \ldots \wedge f_n x$$

is a normal filter term on A.

Examples

Definition

A unary map *f* is a (dual normal) *operator* if $f(x \land y) = fx \land fy$, and, f1 = 1.

Theorem ("Folklore")

Let **A** be a boolean algebra equipped with finitely many operators, denoted f_1, f_2, \ldots, f_n . Then the term *t*, defined by

$$tx = f_1 x \wedge f_2 x \wedge \ldots \wedge f_n x$$

is a normal filter term on A.

Theorem (Sankappanavar, 1985)

Double-Heyting algebras possess a normal filter term.

• Let *M* denote the set of extra operations on a Heyting algebra

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms
- Let [M] denote the result of his construction a unary map on the underlying set

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms
- Let [M] denote the result of his construction a unary map on the underlying set

Lemma (T., 2016)

If [M] exists, and there exists a term t in the language of **A** such that tx = [M]x, then t is a normal filter term.

- Let *M* denote the set of extra operations on a Heyting algebra
- Hasimoto (2001) developed a construction that can be used to construct normal filter terms
- Let [M] denote the result of his construction a unary map on the underlying set

Lemma (T., 2016)

If [M] exists, and there exists a term t in the language of **A** such that tx = [M]x, then t is a normal filter term.

Lemma (Hasimoto, 2001)

Let $M = \{f_1, f_2, \dots, f_n\}$ be a finite set of operators. Then [M] exists, and

$$[M]x = f_1x \wedge f_2x \wedge \ldots \wedge f_nx$$

Definition

A unary map *f* is an *anti-operator* if $f(x \land y) = fx \lor fy$, and, f1 = 0. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Constructing normal filter terms

Definition

A unary map *f* is an *anti-operator* if $f(x \land y) = fx \lor fy$, and, f1 = 0. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Lemma (T., 2016)

Let f be an anti-operator on a Heyting algebra. Then [f] exists, and

$$[f]x = \neg fx$$

Constructing normal filter terms

Definition

A unary map *f* is an *anti-operator* if $f(x \land y) = fx \lor fy$, and, f1 = 0. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Lemma (T., 2016)

Let f be an anti-operator on a Heyting algebra. Then [f] exists, and

$$[f]x = \neg fx$$

Example (Meskhi, 1982)

If **A** is a Heyting algebra with involution, i.e. a Heyting algebra equipped with a single unary operation *i* that is a dual automorphism. The map $tx := \neg ix$ is a normal filter term on **A**.

The dual pseudocomplement

Example

Let **A** be an EHA. A unary operation \sim is a *dual pseudocomplement operation* if the following equivalence is satisfied for all $x \in A$:

 $x \lor y = 1 \iff y \ge \sim x$.

The dual pseudocomplement

Example

Let **A** be an EHA. A unary operation \sim is a *dual pseudocomplement operation* if the following equivalence is satisfied for all $x \in A$:

$$x \vee y = 1 \iff y \geq \sim x.$$

Corollary (Sankappanavar, 1985)

Let **A** be a dually pseudocomplemented Heyting algebra. Then $\neg \sim$ is a normal filter term on **A**.

Lemma

Let **A** be an EHA, let t be a normal filter term on **A**, and let $dx = x \wedge tx$.

- A is subdirectly irreducible if and only if there exists $b \in A \setminus \{1\}$ such that for all $x \in A \setminus \{1\}$ there exists $n \in \omega$ such that $d^n x \leq b$.
- **2** A is simple if and only if for all $x \in A \setminus \{1\}$ there exists $n \in \omega$ such that $d^n x = 0$.

x O

Lemma

Let **A** be an EHA, let t be a normal filter term on **A**, and let $dx = x \wedge tx$.

- A is subdirectly irreducible if and only if there exists $b \in A \setminus \{1\}$ such that for all $x \in A \setminus \{1\}$ there exists $n \in \omega$ such that $d^n x \leq b$.
- **2** A is simple if and only if for all $x \in A \setminus \{1\}$ there exists $n \in \omega$ such that $d^n x = 0$.

Definition

A variety \mathcal{V} has *definable principal congruences* (DPC) if you can define principal congruences by a first order formula. If this is done with a finite conjunction of equations then \mathcal{V} has EDPC.

Definition

A variety \mathcal{V} has *definable principal congruences* (DPC) if you can define principal congruences by a first order formula. If this is done with a finite conjunction of equations then \mathcal{V} has EDPC.

Theorem (T., 2016)

Let \mathcal{V} be a variety of EHAs with a common normal filter term t, and let $dx = x \wedge tx$. Then the following are equivalent:

- V has DPC,
- V has EDPC,

3
$$\mathcal{V} \models d^{n+1}x = d^nx$$
 for some $n \in \omega$.

Definition

- A variety is *semisimple* if every subdirectly irreducible algebra is simple.
- A variety is congruence permutable if for every pair of congruences θ₁, θ₂ on every algebra, θ₁ ∘ θ₂ = θ₂ ∘ θ₁
- A variety is a discriminator variety if there is a ternary term t in the language of V such that t is a discriminator term on every subdirectly irreducible member of V, i.e.,

$$t(x,y,z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{if } x = y. \end{cases}$$

Theorem (Blok, Köhler and Pigozzi, 1984)

Let \mathcal{V} be a variety of any signature. The following are equivalent:

- \bigcirc V is semisimple, congruence permutable, and has EDPC.
- $2 \mathcal{V}$ is a discriminator variety.

Theorem (Blok, Köhler and Pigozzi, 1984)

Let \mathcal{V} be a variety of any signature. The following are equivalent:

- V is semisimple, congruence permutable, and has EDPC.
- $\mathbf{2}$ \mathcal{V} is a discriminator variety.

Theorem (T., 2016)

Let \mathcal{V} be a variety of dually pseudocomplemented EHAs and assume \mathcal{V} has a normal filter term t. Then the following are equivalent.

- V is semisimple.
- 2 \mathcal{V} is a discriminator variety.

This generalises a result by Kowalski and Kracht (2006) for BAOs and a result of mine (2015) to appear for double-Heyting algebras.