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Constructing boolean algebras

Consider the set S = {1,2, 3}.
P(S) = {2.{1}.{2}.{3},

{1,2},{1,3},{2,3},
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Constructing boolean algebras

Consider the set S = {1,2, 3}.

P(S) = {2.{1}.{2}.{3},
{1,2},{1,8},{2,3},
{1,2,3}}

@ XxVy=xUy
@ XAYy=xNy
@ —x =S\x
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Finite characterisation

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is a boolean lattice,
Q L = P(B) for some finite set B.
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Let L be a finite lattice. Then the following are equivalent.
@ L is a boolean lattice,
Q L = P(B) for some finite set B.

Infinite counterexample

Let FC(N) denote the set of finite or cofinite subsets of N. It is easily
assigned the structure of a boolean algebra, but is the wrong
cardinality to come from a powerset.
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Finite characterisation

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is a boolean lattice,
Q L = P(B) for some finite set B.

Infinite counterexample

Let FC(N) denote the set of finite or cofinite subsets of N. It is easily
assigned the structure of a boolean algebra, but is the wrong
cardinality to come from a powerset.

We will return to the infinite case later.
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Graphs

A graph:

o—C0O0—->0O0

A subgraph:
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The lattice of subgraphs

@ Let G= (V,E) be a graph. The set of all subgraphs of G induces
a bounded distributive lattice, which we will call S(G), where

(Vi,Eq) v (Vo, E2) = (V1 U Vo, B4 U E3)
<V1,E1> A\ <V2,E2> = <V1 N V2,E1 ﬂE2>.

@ Note that we permit the empty graph.
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The lattice of subgraphs

@ Let G= (V,E) be a graph. The set of all subgraphs of G induces
a bounded distributive lattice, which we will call S(G), where

(Vi, Eq) v (Va, Ep) = (ViU Vo, By U Ep)
<V1,E1> A <V2,E2> = <V1 N Vs, E4 ﬂE2>.

@ Note that we permit the empty graph.

Theorem (Reyes & Zolfaghari, 1996)
Let G be a graph. Then S(G) naturally forms a double-Heyting algebra.J
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Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element —x € L such that x A =x = 0. J
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Pseudocomplementation

Let L be a lattice and let x € L. Then x has a pseudocomplement if
there exists a largest element —x € L such that x A =x = 0. J

@ Example: The lattice of open sets of a topological space X. If U is
an open set, then =U = int(X \ U).

Let L be a lattice and let x € L. Then x has a dual pseudocomplement
if there exists a smallest element ~x € L such that x V ~x = 1. J

@ Example: The lattice of closed sets of a topological space X. If C
is a closed set, then ~U = cl(X '\ C).

Definition

An algebra A = (A; vV, A, —,~,0,1) is a double p-algebra if

(A; Vv, A,0,1) is a bounded lattice, and — and ~ are the
pseudocomplement and dual pseudocomplement respectively.

Chris Taylor Algebras of hypergraphs September 15, 2016 9/28




The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra
edges. Formally, for a graph G = (V, E) and a subgraph H = (V’, E’):

~H=(V\V'{ec E\E'| (vx € &) x € V\V'})
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The algebra of subgraphs

Dual pseudocomplement

Just add the missing vertices back. Formally, for a graph G = (V, E)
and a subgraph H = (V' E'):

~H=(WV' u{veV|(ZJec E\E')vee},E\E)
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Pseudocomplements are not bijective

Boolean lattices: no two elements share a complement
Double p-algebras: not true! J
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Regular double p-algebras

@ Let A be an algebra. We say that A is congruence regular if, for all
a, 8 € Con(A), we have
(BxeA)x/a=x/8) = a=7p.

@ Example: groups
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Regular double p-algebras

@ Let A be an algebra. We say that A is congruence regular if, for all
a, 8 € Con(A), we have

(Bx e A)x/a=x/P) = a=p.

@ Example: groups

Theorem (Varlet, 1972)

Let A be a double p-algebra. Then the following are equivalent.
@ A is congruence regular.
Q (Va,bec A) if-a=—-band~a= ~b thena=b.
Q (vabe A an~a<bVv-b.
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A well-behaved structure

Theorem

Let G= (V,E) be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.
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A well-behaved structure

Theorem

Let G= (V,E) be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.

Proof.

Let A= (Ay,Ag) and B = (By, Be) be subgraphs of G. Recall that for
a subgraph H = (V' E'),

-H=(V\V' {ec E\E'| (vxece)xe V\V'}) (1)
~H=(V\V'u{veV|(3eec E\E')vee},E\E. (2)

Assume —A = =B and ~A = ~B. Then from (1) we have

V\Ay = V\By and from (2) we have E\Ag = E\Bg. Hence,
A=B.
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Some results from the literature

Theorem (Reyes & Zolfaghari, 1996)
Let G be a graph. Then S(G) naturally forms a double-Heyting algebra.J
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Some results from the literature

Theorem (Reyes & Zolfaghari, 1996)
Let G be a graph. Then S(G) naturally forms a double-Heyting algebra.

Theorem (Katrinak, 1973)

Let A be a regular double p-algebra. Then A is term-equivalent to a
double-Heyting algebra via the term

X—=y=">72(2XxV-my)Af~(XVox)VoxVyVay

and its dual.
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Are multigraphs enough?
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Are multigraphs enough?

-
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Hypergraphs

Definition
An hypergraph is a triple (P, L, l) where P is a set of points, L is a set

of lines and / C P x L is an incidence relation describing which points
are incident to which lines.

Example
Let P={1,2,3}, L= {x,y, z, a,b}, and let

I={1,2,3} x {x,y}
u{1,2} x {z}
u{(1,a),(1,b)}
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Hypergraphs

Example
Let P = {17253}’ L = {Xayvz’ avb}! and Iet

I={1,2,3} x {x,y}
u{1,2} x{z}
u{(1,a),(1,0)}
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Subhypergraphs

Definition
Let G= (P, L, ) be a hypergraph. A sub(hyper)graph of G is a pair
(P, L’ such that
Q@ P CPandl CL,
Q foralltel,if (p,¢) € Ithenp e P.
The incidence relation is defined implicitly from G.
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Subhypergraphs

Definition
Let G= (P, L, ) be a hypergraph. A sub(hyper)graph of G is a pair
(P, L") such that
Q@ PCPandl' CL,
Q foralltel,if (p,¢) € Ithenp e P.
The incidence relation is defined implicitly from G.

Let S(G) denote the set of all subgraphs of a hypergraph G. This
induces a double p-algebra in a similar way to graphs, where

(P 'Y= (P\P,{te L\L"| (Vpe P) (p,t) e | = pe P\P}),
~(P' LY =(P\P'U{peP|(3leL\L)(pr)el},L\L).
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The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is a boolean lattice,
Q L = P(B) for some finite set B.
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The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.
@ L is a boolean lattice,
Q L = P(B) for some finite set B.

Theorem (T., 2015)

Let L be a finite lattice. Then the following are equivalent.
@ L is (the underlying lattice of) a regular double p-algebra,
Q L = S(G) for some finite hypergraph G,

Q L= P(B) x S(G) for some finite set B and some finite hypergraph
G.

v
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The proof begins

Lemma
Let{G; | i € I} be a set of mutually disjoint hypergraphs. Then
slJe)=1]s@G.
icl icl
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Proof.
Define the map ¢: S(U;c; Gi) — [1;c; S(Gi) by o(H)(j) = HN G;. Then
v is the required isomorphism. O
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The proof begins

Lemma
Let{G; | i € I} be a set of mutually disjoint hypergraphs. Then

slJe)=1]s@G.

iel iel

Proof.
Define the map ¢: S(U;¢; Gi) — [, S(Gi) by ©(H)(j) = HN G;. Then
v is the required isomorphism. O

v

Corollary
L = S(G) for some hypergraph G if and only if L = P(B) x S(G) for
some set B and some hypergraph G.
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The proof begins

Lemma
Let{G; | i € I} be a set of mutually disjoint hypergraphs. Then

slJa) =1]s@G).

icl icl )

Proof.
Define the map ¢: S(U;c; Gi) — [1;c; S(Gi) by o(H)(j) = HN G;. Then
v is the required isomorphism. O
Corollary

L = S(G) for some hypergraph G if and only if L = P(B) x S(G) for
some set B and some hypergraph G.

Observe that these results hold for the infinite case as well.
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Lemma

Let A be a finite regular double-p algebra. Then there is a (possibly
trivial) boolean algebra B and a regular double p-algebra C such that
A = B x C, and every atom in C is below every coatom in C.
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Lemma

Let A be a finite regular double-p algebra. Then there is a (possibly
trivial) boolean algebra B and a regular double p-algebra C such that
A = B x C, and every atom in C is below every coatom in C.

Proof.
(Sketch) Let A(A) denote the set of atoms in A and let C(A) denote the
set of coatoms in A. Let

X={ac A(A)|(3ceC(A)) ac}
Y={ceC(A)|(3ac A(A)) a £ c}.

v
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Proof.

(Sketch) Let A(A) denote the set of atoms in A and let C(A) denote the
set of coatoms in A. Let
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Lemma

Let A be a finite regular double-p algebra. Then there is a (possibly
trivial) boolean algebra B and a regular double p-algebra C such that
A = B x C, and every atom in C is below every coatom in C.

Proof.

(Sketch) Let A(A) denote the set of atoms in A and let C(A) denote the
set of coatoms in A. Let

X={aec A(A) | (3c € C(A)) a £ c},
Y={ceC(A)|(3ac A(A)) a £ c}.

We can prove that \/X € Cen(A), where —=\/X = A Y. The theory of
distributive lattices then tells us that

Ag¢\/xx ¢/\Y.

The lattices |\/ X and |\ 'Y have the desired algebraic structure. O
September 15,2016  23/28




The hypergraph construction

Lemma

Let A be a finite regular double p-algebra and assume that for all
ae A(A) and all c € C(A) we have a < c. Then, there exists a
hypergraph G with no isolated points and no empty lines such that
A= S(G).
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The hypergraph construction

Lemma

Let A be a finite regular double p-algebra and assume that for all
ae A(A) and all c € C(A) we have a < c. Then, there exists a
hypergraph G with no isolated points and no empty lines such that
A= S(G).

Proof.
The required hypergraph will be given by G = (P, L, l), where
P=A(A),L=C(A)and I ={(a,c) e Px L|a< ~c}.
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The hypergraph construction

Lemma

Let A be a finite regular double p-algebra and assume that for all
ae A(A) and all c € C(A) we have a < c. Then, there exists a
hypergraph G with no isolated points and no empty lines such that
A= S(G).

Proof.

The required hypergraph will be given by G = (P, L, l), where
P=A(A),L=C(A)and I ={(a,c) e Px L|a< ~c}. The
isomorphism is given by ¢: S(G) — A by:

0 (P, Ly) = \[ PV \/{~c|ce Ly} O
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A simple lemma

Definition
Let A be a doubly atomic lattice, and let A(x) = A(A) N }x and
C(x) =C(A)n1x.
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A large portion of the proof in the previous slides relies on the following
simple observation:
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A simple lemma

Definition
Let A be a doubly atomic lattice, and let A(x) = A(A) N }x and
C(x) =C(A)n1x.

A large portion of the proof in the previous slides relies on the following
simple observation:
Lemma

Let A be a complete, doubly atomic double p-algebra and let x, y € A.
Then,

@ —x = —[VA®X)] and ~x = ~[AC(X)].
Q IfA is regular, then A(x) = A(y) and C(x) = C(y) together imply
X=y.
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The infinite case

Definition
Let A be a complete lattice. We say that A is completely distributive if,
for any doubly indexed set {x;; | i € /,j € J}, we have

AV xi; =\ Axir.

il jed feFicl

where F is the set of all functions from /to J.
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The infinite case

Definition
Let A be a complete lattice. We say that A is completely distributive if,
for any doubly indexed set {x;; | i € /,j € J}, we have

AV %=\ N\ X,

iel jed feF iel
where F is the set of all functions from / to J. Special cases:

VXANY=\/{xrylxeXyeY} (JID)
AXVAY = A\{xvylxeXyeY} (MID)
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The infinite case

Definition
Let A be a complete lattice. We say that A is completely distributive if,
for any doubly indexed set {x;; | i € /,j € J}, we have

AV %=\ N\ *is:

icl jed feF iel
where F is the set of all functions from / to J. Special cases:

VXANY=\/{xrylxeXyeY} (JID)
AXVAY = A\{xvylxeXyeY} (MID)

v

If “finite” is replaced with “complete, atomic, coatomic and satisfies
both (MID) and (JID)” then all of the previous results hold.
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The main result

Theorem

Let B be a boolean lattice. Then the following are equivalent.
Q@ B P(X) for some set X.
@ B is complete and atomic.
© B is complete and completely distributive.
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The main result

Theorem

Let B be a boolean lattice. Then the following are equivalent.
Q@ B = P(X) for some set X.
@ B is complete and atomic.
© B is complete and completely distributive.

Theorem (T., 2015)

Let A be a regular double p-algebra. Then the following are equivalent.
Q@ A = P(B) x S(G) for some set B and some hypergraph G.
Q@ A = S(G) for some hypergraph G.
©Q A is complete, completely distributive and doubly atomic.
Q A is complete, satisfies (JID) and (MID), and is doubly atomic.
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Embedding theorem

Theorem (Stone’s Theorem)

Let B be a boolean algebra. Then there is a set X such that B embeds
into P(X).
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Let B be a boolean algebra. Then there is a set X such that B embeds
into P(X).

v

Theorem (T., 2015)

Let A be a regular double p-algebra. Then there is a hypergraph G
such that A embeds into S(G).
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Embedding theorem

Theorem (Stone’s Theorem)

Let B be a boolean algebra. Then there is a set X such that B embeds
into P(X).

v

Theorem (T., 2015)

Let A be a regular double p-algebra. Then there is a hypergraph G
such that A embeds into S(G).

This rides on the Priestley duality for distributive lattices.
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