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Constructing boolean algebras

Consider the set S = {1,2,3}.

P(S) =
{

∅, {1}, {2}, {3},

{1,2}, {1,3}, {2,3},

{1,2,3}
}

x ∨ y = x ∪ y
x ∧ y = x ∩ y
¬x = S\x
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Finite characterisation

Theorem
Let L be a finite lattice. Then the following are equivalent.

1 L is a boolean lattice,
2 L ∼= P(B) for some finite set B.

Infinite counterexample
Let FC(N) denote the set of finite or cofinite subsets of N. It is easily
assigned the structure of a boolean algebra, but is the wrong
cardinality to come from a powerset.

We will return to the infinite case later.
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Graphs

A graph:

A subgraph:
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The lattice of subgraphs

Let G = 〈V ,E〉 be a graph. The set of all subgraphs of G induces
a bounded distributive lattice, which we will call S(G), where

〈V1,E1〉 ∨ 〈V2,E2〉 = 〈V1 ∪ V2,E1 ∪ E2〉
〈V1,E1〉 ∧ 〈V2,E2〉 = 〈V1 ∩ V2,E1 ∩ E2〉.

Note that we permit the empty graph.

Theorem (Reyes & Zolfaghari, 1996)
Let G be a graph. Then S(G) naturally forms a double-Heyting algebra.
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Graph complements

↪→
Complement
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Pseudocomplementation
Let L be a lattice and let x ∈ L. Then x has a pseudocomplement if
there exists a largest element ¬x ∈ L such that x ∧ ¬x = 0.

Example: The lattice of open sets of a topological space X . If U is
an open set, then ¬U = int(X \ U).

Let L be a lattice and let x ∈ L. Then x has a dual pseudocomplement
if there exists a smallest element ∼x ∈ L such that x ∨ ∼x = 1.

Example: The lattice of closed sets of a topological space X . If C
is a closed set, then ∼U = cl(X \ C).

Definition
An algebra A = 〈A;∨,∧,¬,∼,0,1〉 is a double p-algebra if
〈A;∨,∧,0,1〉 is a bounded lattice, and ¬ and ∼ are the
pseudocomplement and dual pseudocomplement respectively.
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The algebra of subgraphs

Pseudocomplement
Take the set complement of the subgraph and abandon the extra
edges. Formally, for a graph G = 〈V ,E〉 and a subgraph H = 〈V ′,E ′〉:

¬H = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉

↪→
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The algebra of subgraphs

Dual pseudocomplement
Just add the missing vertices back. Formally, for a graph G = 〈V ,E〉
and a subgraph H = 〈V ′,E ′〉:

∼H = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉

↪→
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Pseudocomplements are not bijective

Boolean lattices: no two elements share a complement
Double p-algebras: not true!

↪→
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Regular double p-algebras

Let A be an algebra. We say that A is congruence regular if, for all
α, β ∈ Con(A), we have

((∃x ∈ A) x/α = x/β) =⇒ α = β.

Example: groups

Theorem (Varlet, 1972)
Let A be a double p-algebra. Then the following are equivalent.

1 A is congruence regular.
2 (∀a,b ∈ A) if ¬a = ¬b and ∼a = ∼b then a = b.
3 (∀a,b ∈ A) a ∧ ∼a ≤ b ∨ ¬b.
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A well-behaved structure

Theorem
Let G = 〈V ,E〉 be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.

Proof.
Let A = 〈AV ,AE〉 and B = 〈BV ,BE〉 be subgraphs of G. Recall that for
a subgraph H = 〈V ′,E ′〉,

¬H = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉 (1)
∼H = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉. (2)

Assume ¬A = ¬B and ∼A = ∼B. Then from (1) we have
V\AV = V\BV and from (2) we have E\AE = E\BE . Hence,
A = B.

Chris Taylor Algebras of hypergraphs September 15, 2016 14 / 28



A well-behaved structure

Theorem
Let G = 〈V ,E〉 be a graph. Then S(G) is (the underlying lattice of) a
regular double p-algebra.

Proof.
Let A = 〈AV ,AE〉 and B = 〈BV ,BE〉 be subgraphs of G. Recall that for
a subgraph H = 〈V ′,E ′〉,

¬H = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉 (1)
∼H = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉. (2)

Assume ¬A = ¬B and ∼A = ∼B. Then from (1) we have
V\AV = V\BV and from (2) we have E\AE = E\BE . Hence,
A = B.

Chris Taylor Algebras of hypergraphs September 15, 2016 14 / 28



Some results from the literature

Theorem (Reyes & Zolfaghari, 1996)
Let G be a graph. Then S(G) naturally forms a double-Heyting algebra.

Theorem (Katriňák, 1973)
Let A be a regular double p-algebra. Then A is term-equivalent to a
double-Heyting algebra via the term

x → y = ¬¬(¬x ∨ ¬¬y) ∧ [∼(x ∨ ¬x) ∨ ¬x ∨ y ∨ ¬y ]

and its dual.
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Are graphs enough?

→
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Are multigraphs enough?
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Hypergraphs

Definition
An hypergraph is a triple 〈P,L, I〉 where P is a set of points, L is a set
of lines and I ⊆ P × L is an incidence relation describing which points
are incident to which lines.

Example
Let P = {1,2,3}, L = {x , y , z,a,b}, and let

I = {1,2,3} × {x , y}
∪ {1,2} × {z}
∪ {(1,a), (1,b)}
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Hypergraphs
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Subhypergraphs

Definition
Let G = 〈P,L, I〉 be a hypergraph. A sub(hyper )graph of G is a pair
〈P ′,L′〉 such that

1 P ′ ⊆ P and L′ ⊆ L,
2 for all ` ∈ L′, if (p, `) ∈ I then p ∈ P ′.

The incidence relation is defined implicitly from G.

Let S(G) denote the set of all subgraphs of a hypergraph G. This
induces a double p-algebra in a similar way to graphs, where

¬〈P ′,L′〉 = 〈P\P ′, {` ∈ L\L′ | (∀p ∈ P) (p, `) ∈ I =⇒ p ∈ P\P ′}〉,
∼〈P ′,L′〉 = 〈P\P ′ ∪ {p ∈ P | (∃` ∈ L\L′) (p, `) ∈ I},L\L′〉.
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The main result (finite version)

Theorem
Let L be a finite lattice. Then the following are equivalent.

1 L is a boolean lattice,
2 L ∼= P(B) for some finite set B.

Theorem (T., 2015)
Let L be a finite lattice. Then the following are equivalent.

1 L is (the underlying lattice of ) a regular double p-algebra,
2 L ∼= S(G) for some finite hypergraph G,
3 L ∼= P(B)× S(G) for some finite set B and some finite hypergraph

G.
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The proof begins

Lemma
Let {Gi | i ∈ I} be a set of mutually disjoint hypergraphs. Then

S(
⋃
i∈I

Gi) ∼=
∏
i∈I

S(Gi).

Proof.
Define the map ϕ : S(

⋃
i∈I Gi)→

∏
i∈I S(Gi) by ϕ(H)(j) = H ∩Gj . Then

ϕ is the required isomorphism.

Corollary
L ∼= S(G) for some hypergraph G if and only if L ∼= P(B)× S(G) for
some set B and some hypergraph G.

Observe that these results hold for the infinite case as well.

Chris Taylor Algebras of hypergraphs September 15, 2016 22 / 28



The proof begins

Lemma
Let {Gi | i ∈ I} be a set of mutually disjoint hypergraphs. Then

S(
⋃
i∈I

Gi) ∼=
∏
i∈I

S(Gi).

Proof.
Define the map ϕ : S(

⋃
i∈I Gi)→

∏
i∈I S(Gi) by ϕ(H)(j) = H ∩Gj . Then

ϕ is the required isomorphism.

Corollary
L ∼= S(G) for some hypergraph G if and only if L ∼= P(B)× S(G) for
some set B and some hypergraph G.

Observe that these results hold for the infinite case as well.

Chris Taylor Algebras of hypergraphs September 15, 2016 22 / 28



The proof begins

Lemma
Let {Gi | i ∈ I} be a set of mutually disjoint hypergraphs. Then

S(
⋃
i∈I

Gi) ∼=
∏
i∈I

S(Gi).

Proof.
Define the map ϕ : S(

⋃
i∈I Gi)→

∏
i∈I S(Gi) by ϕ(H)(j) = H ∩Gj . Then

ϕ is the required isomorphism.

Corollary
L ∼= S(G) for some hypergraph G if and only if L ∼= P(B)× S(G) for
some set B and some hypergraph G.

Observe that these results hold for the infinite case as well.

Chris Taylor Algebras of hypergraphs September 15, 2016 22 / 28



The proof begins

Lemma
Let {Gi | i ∈ I} be a set of mutually disjoint hypergraphs. Then

S(
⋃
i∈I

Gi) ∼=
∏
i∈I

S(Gi).

Proof.
Define the map ϕ : S(

⋃
i∈I Gi)→

∏
i∈I S(Gi) by ϕ(H)(j) = H ∩Gj . Then

ϕ is the required isomorphism.

Corollary
L ∼= S(G) for some hypergraph G if and only if L ∼= P(B)× S(G) for
some set B and some hypergraph G.

Observe that these results hold for the infinite case as well.
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Lemma
Let A be a finite regular double-p algebra. Then there is a (possibly
trivial) boolean algebra B and a regular double p-algebra C such that
A ∼= B× C, and every atom in C is below every coatom in C.

Proof.
(Sketch) Let A(A) denote the set of atoms in A and let C(A) denote the
set of coatoms in A. Let

X = {a ∈ A(A) | (∃c ∈ C(A)) a � c},
Y = {c ∈ C(A) | (∃a ∈ A(A)) a � c}.

We can prove that
∨

X ∈ Cen(A), where ¬
∨

X =
∧

Y . The theory of
distributive lattices then tells us that

A ∼= ↓
∨

X × ↓
∧

Y .

The lattices ↓
∨

X and ↓
∧

Y have the desired algebraic structure.
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The hypergraph construction

Lemma
Let A be a finite regular double p-algebra and assume that for all
a ∈ A(A) and all c ∈ C(A) we have a ≤ c. Then, there exists a
hypergraph G with no isolated points and no empty lines such that
A ∼= S(G).

Proof.
The required hypergraph will be given by G = 〈P,L, I〉, where
P = A(A), L = C(A) and I = {(a, c) ∈ P × L | a ≤ ∼c}. The
isomorphism is given by ϕ : S(G)→ A by:

ϕ : 〈PH ,LH〉 7→
∨

PH ∨
∨
{∼c | c ∈ LH}.
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A simple lemma

Definition
Let A be a doubly atomic lattice, and let A(x) = A(A) ∩ ↓x and
C(x) = C(A) ∩ ↑x .

A large portion of the proof in the previous slides relies on the following
simple observation:

Lemma
Let A be a complete, doubly atomic double p-algebra and let x , y ∈ A.
Then,

1 ¬x = ¬[
∨
A(x)] and ∼x = ∼[

∧
C(x)].

2 If A is regular, then A(x) = A(y) and C(x) = C(y) together imply
x = y.
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The infinite case

Definition
Let A be a complete lattice. We say that A is completely distributive if,
for any doubly indexed set {xi,j | i ∈ I, j ∈ J}, we have∧

i∈I

∨
j∈J

xi,j =
∨
f∈F

∧
i∈I

xi,f (i),

where F is the set of all functions from I to J.

Special cases:∨
X ∧

∨
Y =

∨
{x ∧ y | x ∈ X , y ∈ Y} (JID)∧

X ∨
∧

Y =
∧
{x ∨ y | x ∈ X , y ∈ Y} (MID)

If “finite” is replaced with “complete, atomic, coatomic and satisfies
both (MID) and (JID)” then all of the previous results hold.
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The main result

Theorem
Let B be a boolean lattice. Then the following are equivalent.

1 B ∼= P(X ) for some set X .
2 B is complete and atomic.
3 B is complete and completely distributive.

Theorem (T., 2015)
Let A be a regular double p-algebra. Then the following are equivalent.

1 A ∼= P(B)× S(G) for some set B and some hypergraph G.
2 A ∼= S(G) for some hypergraph G.
3 A is complete, completely distributive and doubly atomic.
4 A is complete, satisfies (JID) and (MID), and is doubly atomic.
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Embedding theorem

Theorem (Stone’s Theorem)
Let B be a boolean algebra. Then there is a set X such that B embeds
into P(X ).

Theorem (T., 2015)
Let A be a regular double p-algebra. Then there is a hypergraph G
such that A embeds into S(G).

This rides on the Priestley duality for distributive lattices.
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