Algebraic logic

Christopher Taylor Supervised by Tomasz Kowalski and Brian Davey

SEMS Research Workshop 2016

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal

Example

Rephrase the first two lines:

• (IF x is a man THEN x is mortal) AND (Socrates is a man)

Or more symbolically,

• $[man(x) \rightarrow mortal(x)] \land man(Socrates)$

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal

Example

Rephrase the first two lines:

• (IF x is a man THEN x is mortal) AND (Socrates is a man)

Or more symbolically,

•
$$[man(x) \rightarrow mortal(x)] \land man(Socrates)$$

Generally,

$$(p
ightarrow q) \land p dash q$$

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal

Example

Rephrase the first two lines:

• (IF x is a man THEN x is mortal) AND (Socrates is a man)

Or more symbolically,

• $[man(x) \rightarrow mortal(x)] \land man(Socrates)$

Generally,

$$(p
ightarrow q) \land p dash q$$

Classical logic is the study of propositions formed by the logical connectives \wedge (AND), \vee (OR) and \neg (NOT).

Basic and Derived Argument Forms					
Name	Sequent	Description			
Modus Ponens	$((p ightarrow q) \land p) dash q$	If p then $q; p;$ therefore q			
Modus Tollens	$((p \rightarrow q) \land \neg q) \vdash \neg p$	If p then q; not q; therefore not p			
Hypothetical Syllogism	$((p ightarrow q) \land (q ightarrow r)) dash (p ightarrow r)$	If p then q; if q then r; therefore, if p then r			
Disjunctive Syllogism	$((p \lor q) \land \neg p) \vdash q$	Either p or q, or both; not p; therefore, q			
Constructive Dilemma	$((p ightarrow q) \land (r ightarrow s) \land (p \lor r)) dash (q \lor s)$	If p then q; and if r then s; but p or r; therefore q or s			
Destructive Dilemma	$((p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s)) \vdash (\neg p \lor \neg r)$	If p then q; and if r then s; but not q or not s; therefore not p or not r			
Bidirectional Dilemma	$((p ightarrow q) \land (r ightarrow s) \land (p \lor \neg s)) \vdash (q \lor \neg r)$	If p then q; and if r then s; but p or not s; therefore q or not r			
Simplification	$(p \land q) \vdash p$	p and q are true; therefore p is true			
Conjunction	$p, q \vdash (p \land q)$	p and q are true separately; therefore they are true conjointly			
Addition	$p \vdash (p \lor q)$	p is true; therefore the disjunction (p or q) is true			
Composition	$((p ightarrow q) \land (p ightarrow r)) dash (p ightarrow r)) dash (p ightarrow r))$	If p then q; and if p then r; therefore if p is true then q and r are true			
De Morgan's Theorem (1)	$\neg (p \land q) \vdash (\neg p \lor \neg q)$	The negation of (p and q) is equiv. to (not p or not q)			
De Morgan's Theorem (2)	$\neg (p \lor q) \vdash (\neg p \land \neg q)$	The negation of (p or q) is equiv. to (not p and not q)			
Commutation (1)	$(p \lor q) \vdash (q \lor p)$	(p or q) is equiv. to (q or p)			
Commutation (2)	$(p \land q) \vdash (q \land p)$	(p and q) is equiv. to (q and p)			
Commutation (3)	$(p \leftrightarrow q) \vdash (q \leftrightarrow p)$	(p is equiv. to q) is equiv. to (q is equiv. to p)			
Association (1)	$(p \lor (q \lor r)) \vdash ((p \lor q) \lor r)$	p or (q or r) is equiv. to (p or q) or r			
Association (2)	$(p \land (q \land r)) \vdash ((p \land q) \land r)$	p and (q and r) is equiv. to (p and q) and r			
Distribution (1)	$(p \land (q \lor r)) \vdash ((p \land q) \lor (p \land r))$	p and (q or r) is equiv. to (p and q) or (p and r)			
Distribution (2)	$(p \lor (q \land r)) \vdash ((p \lor q) \land (p \lor r))$	p or (q and r) is equiv. to (p or q) and (p or r)			
Double Negation	$p \vdash \neg \neg p$	p is equivalent to the negation of not p			
Transposition	(p ightarrow q) dash (eg q ightarrow eg p)	If p then q is equiv. to if not q then not p			
Material Implication	(p ightarrow q) dash (eg p ee q)	If p then q is equiv. to not p or q			
Material Equivalence (1)	$(p \leftrightarrow q) \vdash ((p ightarrow q) \land (q ightarrow p))$	(p iff q) is equiv. to (if p is true then q is true) and (if q is true then p is true)			
Material Equivalence (2)	$(p \leftrightarrow q) \vdash ((p \wedge q) \lor (\neg p \land \neg q))$	(p iff q) is equiv. to either (p and q are true) or (both p and q are false)			
Material Equivalence (3)	$(p \leftrightarrow q) \vdash ((p \lor \neg q) \land (\neg p \lor q))$	(p iff q) is equiv to., both (p or not q is true) and (not p or q is true)			
Exportation ^[9]	$((p \land q) ightarrow r) dash (p ightarrow (q ightarrow r))$	from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true)			
Importation	$(p ightarrow (q ightarrow r)) dash ((p \land q) ightarrow r)$	If p then (if q then r) is equivalent to if p and q then r			
Tautology (1)	$p \vdash (p \lor p)$	p is true is equiv. to p is true or p is true			
Tautology (2)	$p \vdash (p \land p)$	p is true is equiv. to p is true and p is true			
Tertium non datur (Law of Excluded Middle)	$\vdash (p \lor \neg p)$	p or not p is true			
Law of Non-Contradiction	$\vdash \neg (p \land \neg p)$	p and not p is false, is a true statement			

More important laws

De Morgan's laws

•
$$\neg (p \land q) \vdash \neg p \lor \neg q$$

•
$$\neg(p \lor q) \vdash \neg p \land \neg q$$

More important laws

De Morgan's laws

•
$$\neg(p \land q) \vdash \neg p \lor \neg q$$

•
$$\neg(p \lor q) \vdash \neg p \land \neg q$$

"You can't have your cake and eat it too"

- NOT[have(cake) AND eat(cake)]
- NOT[have(cake)] OR NOT[eat(cake)]

More important laws

De Morgan's laws

•
$$\neg(p \land q) \vdash \neg p \lor \neg q$$

•
$$\neg(p \lor q) \vdash \neg p \land \neg q$$

"You can't have your cake and eat it too"

- NOT[have(cake) AND eat(cake)]
- NOT[have(cake)] OR NOT[eat(cake)]

Double negation

•
$$p \vdash \neg \neg p$$

•
$$\neg \neg p \vdash p$$

• We can write, for example:

- We can write, for example:
 - ▶ $\neg(p \land q) = \neg p \lor \neg q$,

• We can write, for example:

$$\blacktriangleright \neg (p \land q) = \neg p \lor \neg q,$$

•
$$(p \rightarrow q) \land p \leq q$$
,

• We can write, for example:

•
$$\neg(p \land q) = \neg p \lor \neg q$$
,

$$\blacktriangleright (p \to q) \land p \leq q,$$

$$\neg \neg p = p$$

- We can write, for example:
 - $\blacktriangleright \neg (p \land q) = \neg p \lor \neg q,$
 - ► $(p \rightarrow q) \land p \leq q$,
 - ▶ $\neg \neg p = p$
- Boolean algebra:

- We can write, for example:
 - $\blacktriangleright \neg (p \land q) = \neg p \lor \neg q,$
 - $(p \rightarrow q) \land p \leq q$,
 - ▶ ¬¬p = p
- Boolean algebra:
 - Uses symbols $\{\lor, \land, \neg, 0, 1\}$

- We can write, for example:
 - $\blacktriangleright \neg (p \land q) = \neg p \lor \neg q,$
 - $(p \rightarrow q) \land p \leq q$,
 - ▶ $\neg \neg p = p$
- Boolean algebra:
 - Uses symbols $\{\lor, \land, \neg, 0, 1\}$
 - Equations that arise from the rules of classical logic

- We can write, for example:
 - $\blacktriangleright \neg (p \land q) = \neg p \lor \neg q,$
 - $(p \rightarrow q) \land p \leq q$,
 - ▶ $\neg \neg p = p$
- Boolean algebra:
 - Uses symbols $\{\lor, \land, \neg, 0, 1\}$
 - Equations that arise from the rules of classical logic
- Powerful applications:

Theorem

Every function $f: \{0,1\}^n \to \{0,1\}$ can be defined as a formula using the language of Boolean algebra.

- We can write, for example:
 - $\blacktriangleright \neg (p \land q) = \neg p \lor \neg q,$
 - $(p \rightarrow q) \land p \leq q$,
 - ▶ $\neg \neg p = p$
- Boolean algebra:
 - Uses symbols $\{\lor, \land, \neg, 0, 1\}$
 - Equations that arise from the rules of classical logic
- Powerful applications:

Theorem

Every function $f: \{0,1\}^n \to \{0,1\}$ can be defined as a formula using the language of Boolean algebra.

Incredibly important for building logic circuits

In action

In action

The function

number	binary	output?
0	0000	1
1	0001	0
2	0010	0
3	0011	0
4	0100	1
5	0101	1
6	0110	1
7	0111	0
8	1000	1
9	1001	1

The function

number	binary	output?
0	0000	1
1	0001	0
2	0010	0
3	0011	0
4	0100	1
5	0101	1
6	0110	1
7	0111	0
8	1000	1
9	1001	1

$$(\neg a \land \neg b \land \neg c \land \neg d) \lor (\neg a \land b \land \neg c \land \neg d) \lor (\neg a \land b \land \neg c \land d) \lor (\neg a \land b \land c \land \neg d) \lor (a \land \neg b \land \neg c \land d)$$

The function

number	binary	output?
0	0000	1
1	0001	0
2	0010	0
3	0011	0
4	0100	1
5	0101	1
6	0110	1
7	0111	0
8	1000	1
9	1001	1

$$(\neg a \land \neg b \land \neg c \land \neg d) \lor (\neg a \land b \land \neg c \land \neg d) \lor (\neg a \land b \land \neg c \land d)$$
$$\lor (\neg a \land b \land c \land \neg d) \lor (a \land \neg b \land \neg c \land \neg d) \lor (a \land \neg b \land \neg c \land d)$$
$$= (\neg a \land b \land \neg c) \lor (\neg a \land b \land \neg d) \lor (a \land \neg b \land \neg c) \lor (\neg a \land \neg c \land \neg d)$$

Boolean algebra is closely related to set theory

Boolean algebra is closely related to set theory

Example

A set: {*a*, *b*, *c*, 1, 2, 3} Some subsets: {*b*}; {*a*, 1, 2}; {1, 3}

Boolean algebra is closely related to set theory

Example

A set: {*a*, *b*, *c*, 1, 2, 3} Some subsets: {*b*}; {*a*, 1, 2}; {1, 3}

We can treat AND like intersection:

$$\{a,1,2\}$$
 and $\{1,3\}=\{a,1,2\}\cap\{1,3\}=\{1\}$

Boolean algebra is closely related to set theory

Example

A set: {*a*, *b*, *c*, 1, 2, 3} Some subsets: {*b*}; {*a*, 1, 2}; {1, 3}

We can treat AND like intersection:

$$\{a,1,2\}$$
 and $\{1,3\}=\{a,1,2\}\cap\{1,3\}=\{1\}$

We can treat OR like union:

$$\{a,1,2\}$$
 or $\{b\}=\{a,1,2\}\cup\{b\}=\{a,b,1,2\}$

Boolean algebra is closely related to set theory

Example

A set: {*a*, *b*, *c*, 1, 2, 3} Some subsets: {*b*}; {*a*, 1, 2}; {1, 3}

We can treat AND like intersection:

$$\{a, 1, 2\}$$
 and $\{1, 3\} = \{a, 1, 2\} \cap \{1, 3\} = \{1\}$

We can treat OR like union:

$$\{a, 1, 2\}$$
 or $\{b\} = \{a, 1, 2\} \cup \{b\} = \{a, b, 1, 2\}$

And NOT like complements:

$$\mathsf{NOT}(\{a,1,2\}) = \{a,b,c,1,2,3\} - \{a,1,2\} = \{b,c,3\}$$

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:
 - Based on "constructive provability"

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:
 - Based on "constructive provability"
 - Denies De Morgan's laws and double negation

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:
 - Based on "constructive provability"
 - Denies De Morgan's laws and double negation
 - Considers which equations hold in this context using the same symbols

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:
 - Based on "constructive provability"
 - Denies De Morgan's laws and double negation
 - Considers which equations hold in this context using the same symbols
 - Algebra: "Heyting algebras"

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:
 - Based on "constructive provability"
 - Denies De Morgan's laws and double negation
 - Considers which equations hold in this context using the same symbols
 - Algebra: "Heyting algebras"

You can also go back the other way: "invent things" from an algebraic perspective and apply the lens of logic

- Fuzzy logic:
 - Algebra: monoidal t-norm logic based algebras that are pre-linear commutative bounded residuated lattices
- Intuitionistic logic:
 - Based on "constructive provability"
 - Denies De Morgan's laws and double negation
 - Considers which equations hold in this context using the same symbols
 - Algebra: "Heyting algebras"

You can also go back the other way: "invent things" from an algebraic perspective and apply the lens of logic

• Taylor, C. J.: Algebras of incidence structures: representations of regular double p-algebras. *Algebra universalis* (2016)