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Modus ponens

All men are mortal
Socrates is a man
Therefore, Socrates is mortal

Example
Rephrase the first two lines:

(IF x is a man THEN x is mortal) AND (Socrates is a man)
Or more symbolically,

[man(x)→ mortal(x)] ∧man(Socrates)

Generally,
(p → q) ∧ p ` q

Classical logic is the study of propositions formed by the logical
connectives ∧ (AND), ∨ (OR) and ¬ (NOT).
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More important laws

De Morgan’s laws
¬(p ∧ q) ` ¬p ∨ ¬q
¬(p ∨ q) ` ¬p ∧ ¬q

“You can’t have your cake and eat it too”
NOT[have(cake) AND eat(cake)]
NOT[have(cake)] OR NOT[eat(cake)]

Double negation
p ` ¬¬p
¬¬p ` p
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Boolean algebra

We can write, for example:

I ¬(p ∧ q) = ¬p ∨ ¬q,
I (p → q) ∧ p ≤ q,
I ¬¬p = p

Boolean algebra:

I Uses symbols {∨,∧,¬,0,1}
I Equations that arise from the rules of classical logic

Powerful applications:

Theorem
Every function f : {0,1}n → {0,1} can be defined as a formula using
the language of Boolean algebra.

Incredibly important for building logic circuits
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In action
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The function

number binary output?
0 0000 1
1 0001 0
2 0010 0
3 0011 0
4 0100 1
5 0101 1
6 0110 1
7 0111 0
8 1000 1
9 1001 1

(¬a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (¬a ∧ b ∧ ¬c ∧ ¬d) ∨ (¬a ∧ b ∧ ¬c ∧ d)
∨ (¬a ∧ b ∧ c ∧ ¬d) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (a ∧ ¬b ∧ ¬c ∧ d)
= (¬a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬d) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ ¬c ∧ ¬d)
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Set theory
Boolean algebra is closely related to set theory

Example
A set: {a,b, c,1,2,3}
Some subsets: {b}; {a,1,2}; {1,3}

We can treat AND like intersection:

{a,1,2} AND {1,3} = {a,1,2} ∩ {1,3} = {1}

We can treat OR like union:

{a,1,2} OR {b} = {a,1,2} ∪ {b} = {a,b,1,2}

And NOT like complements:

NOT({a,1,2}) = {a,b, c,1,2,3} − {a,1,2} = {b, c,3}
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Not the only logic

Fuzzy logic:
I Algebra: monoidal t-norm logic based algebras that are pre-linear

commutative bounded residuated lattices
Intuitionistic logic:

I Based on “constructive provability”
I Denies De Morgan’s laws and double negation
I Considers which equations hold in this context using the same

symbols
I Algebra: “Heyting algebras”

You can also go back the other way: “invent things” from an algebraic
perspective and apply the lens of logic

Taylor, C. J.: Algebras of incidence structures: representations of
regular double p-algebras. Algebra universalis (2016)
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