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Modus ponens

@ All men are mortal
@ Socrates is a man
@ Therefore, Socrates is mortal
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Modus ponens

@ All men are mortal
@ Socrates is a man
@ Therefore, Socrates is mortal

Example
Rephrase the first two lines:

@ (IF x is a man THEN x is mortal) AND (Socrates is a man)
Or more symbolically,

@ [man(x) — mortal(x)] A man(Socrates)
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Modus ponens

@ All men are mortal
@ Socrates is a man
@ Therefore, Socrates is mortal

Example
Rephrase the first two lines:

@ (IF x is a man THEN x is mortal) AND (Socrates is a man)
Or more symbolically,

@ [man(x) — mortal(x)] A man(Socrates)

Generally,
(p—aq)Aptq

Classical logic is the study of propositions formed by the logical
connectives A (AND), V (OR) and — (NOT).
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Basic and Derived Argument Forms

sequent

Description

Modus Ponens

(P—a)rp)tq

1tp then g p: therefore ¢

Modus Tollens

(= an-qt-p

1t p then g: not g therefore not p

Hypothetical Syllogism

(P=Ar(@=m)E(por)

Itp then q: if g then - therefore, if p then

Disjunctive Syliogism

(eva)A-p)ta

Either p or g, or both; not p: therefore, ¢

Constructive Dilemma

(= A(r=s)A(pVr)E(gVe)

1fp then g and if 7 then s: but p or 1* therefore g or s

Destructive Dilemma

((p= A= 38)A(-gV-s) - (-pV-r)

It p then g and if 7 then 52 but not g or not s: therefore not p o not 7~

Bidirectional Dilemma

(= A (r=s)ApV-s)) F(qV )

1fp then g and if  then s; but p or not s; therefore g or not

Simplification (PAg)Fp p and g are true; therefore p is true
Conjunction pat (pAg) p and q are true separately; therefore they are true conjointly
Addition pH(pVa) P is irue; therefore the disjunction (p or g) is true

Composition (p=gnlp=27)F(p—(gAT) Ifp then g; and if pthen 7; therefore if p is true then g and - are true

De Morgan's Theorem (1)

~(pra)k(=pV-q)

The negation of (p and g) is equiv. to (not p or not g)

De Morgan's Theorem (2)

~(pva)F(-pA—9)

The negation of (p or g) is equiv. to (not p and not g)

Commutation (1)

(pva)t-(aVp)

(p or g) is equiv. to (q or p)

G )

(prg) - (gnp)

(pand ) is equiv. to (g and p)

Commutation (3)

(Poat(ger)

(pis equiv. to g) is equiv. to (g is equiv. to p)

Associ

ion (1)

(pv(@vr)t((pvavr)

por (g or ) is equiv. to (P or g) or 1

Assotiation (2

(prlghn) k- ((PAg)AT)

pand (g and7) is equiv. to (p and g) and 1

(pA(gvr) = (A V(PAT)

pand (g or ) is equiv. to (p and g) or (pand 1)

)
Distribution (1)
Distribution (2)

(
(pVighn) (v AlpVr)

por (g andr) is equiv. to (p or g) and (p or 1)

Double Negation

pk-p

p s equivalent to the negation of not p

Transposition

(=g k(-9 -p)

1fp then ¢ is equiv. to if not ¢ then not p

Material Implication

(Pt (pva)

Ifp then g is equiv. to not p or ¢

Equivalence (1)

(Pegt(p—>9n(a—p)

(piff q) is equiv. to (if pis true then g is true) and (if g is true then p is true)

Equivalence (2)

oot (prgV(pa—a)

(piff g) is equiv. to either (p and g are true) or (both p and g are faise)

Equivalence (3)

(Pegt(pv-g)A(-pVe)

(piff q) Is equiv to., both (p or ot g is true) and (not p or g is true)

Exportation€!

(prg) o) (a—r)

from (i p and g are true then r°is true) we can prove (if ¢ is true then 7 is true, if pis true)

(= (@=n)Fllpra) —1)

1t p then (if g then 7) is equivalent to if p and ¢ then 7~

Tautology (1) pH(pVp) pis irue is equiv. to pis irue or pis frue
Tautology (2) pE{pAp) s true is equiv. to pis true and pis true
Tertium non datur (Law of Excluded Middle) | - (p V —p) pornotpis true

Law of Non-C

F-(pA-p)

pandnotp s false, is a true statement




More important laws

De Morgan’s laws
® +(pAQ)F—pV—q
® +(pvQq)F-pA-q
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More important laws

De Morgan’s laws
® +(pAQ)F—pV—q
@ ~(pvag)F-pA-q

“You can’t have your cake and eat it too”
@ NOT[have(cake) AND eat(cake)]
@ NOT[have(cake)] OR NOT[eat(cake)]

Chris Taylor Algebraic logic SEMS Research Workshop 4/9



More important laws

De Morgan’s laws
® +(pAQ)F—pV—q
@ ~(pvag)F-pA-q

“You can’t have your cake and eat it too”
@ NOT[have(cake) AND eat(cake)]
@ NOT[have(cake)] OR NOT[eat(cake)]

Double negation
@ pk—-—p
@ ——pkp
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Boolean algebra

@ We can write, for example:
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Boolean algebra

@ We can write, for example:

» 2(pAGQ)=-pPVq,
» (P— g Ap<q,
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@ We can write, for example:
» 2(pAGQ)=-pPVq,
» (P— g Ap<q,
> —|—|p = p
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@ We can write, for example:
» 2(pAQ)=-pV g,
> (P—ag)ApP<q
> —|—|p = p

@ Boolean algebra:
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@ We can write, for example:
» 2(pAQ)=-pV g,
> (P—ag)ApP<q
> mp=p
@ Boolean algebra:
» Uses symbols {Vv,A,—,0,1}

Chris Taylor Algebraic logic SEMS Research Workshop 5/9



Boolean algebra

@ We can write, for example:
» 2(pAQ)=-pV g,
> (P—ag)ApP<q
> p=p
@ Boolean algebra:
» Uses symbols {Vv,A,—,0,1}
» Equations that arise from the rules of classical logic

Chris Taylor Algebraic logic SEMS Research Workshop 5/9



Boolean algebra

@ We can write, for example:
» 2(pAQ)=-pV g,
> (P—ag)ApP<q
> p=p
@ Boolean algebra:
» Uses symbols {Vv,A,—,0,1}
» Equations that arise from the rules of classical logic

@ Powerful applications:

Theorem

Every function f: {0,1}" — {0,1} can be defined as a formula using
the language of Boolean algebra.
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Boolean algebra

@ We can write, for example:
» 2(pAQ)=-pV g,
> (P—ag)ApP<q
> p=p
@ Boolean algebra:
» Uses symbols {Vv,A,—,0,1}
» Equations that arise from the rules of classical logic

@ Powerful applications:

Theorem

Every function f: {0,1}" — {0,1} can be defined as a formula using
the language of Boolean algebra.

@ Incredibly important for building logic circuits
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In action

Cd-
0 103
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The function

number | binary | output?
0000 1

0001
0010
0011
0100
0101
0110
0111
1000
1001

o

OCoOoONOOOTPH~,WN =
—_—=L O = =S A OO0 0
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o

OCoOoONOOOTPH~,WN =
—_—=L O = =S A OO0 0

(raN—-bA-cA-d)V(-anbA-cA-d)V(maNbA-cAd)
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The function

number | binary | output?
0000 1

0001
0010
0011
0100
0101
0110
0111
1000
1001

o

OCoOoONOOOTPH~,WN =
—_—=L O = =S A OO0 0

(raN—-bA-cA-d)V(-anbA-cA-d)V(maNbA-cAd)
V(—anbAncA-d)V(an-bA-cA—-d)V(an-bA-cAd)
=(-anbA-c)V(manbA-=d)V(an—-bA-c)V(-an-cA-d)
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Set theory

Boolean algebra is closely related to set theory
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Set theory

Boolean algebra is closely related to set theory

Example

Aset: {a,b,c,1,2,3}
Some subsets: {b};{a,1,2};{1,3}
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Set theory
Boolean algebra is closely related to set theory

Example

Aset: {a,b,c,1,2,3}
Some subsets: {b};{a,1,2};{1,3}

We can treat AND like intersection:

{a,1,2} AND {1,3} ={a,1,2} n{1,3} = {1}
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Set theory
Boolean algebra is closely related to set theory

Example

Aset: {a,b,c,1,2,3}
Some subsets: {b};{a,1,2};{1,3}

We can treat AND like intersection:
{a,1,2} AND {1,3} = {a,1,2} N {1,3} = {1}
We can treat OR like union:

{a,1,2} or {b} ={a,1,2} u{b} ={a,b,1,2}
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Set theory
Boolean algebra is closely related to set theory

Example

Aset: {a,b,c,1,2,3}
Some subsets: {b};{a,1,2};{1,3}

We can treat AND like intersection:

{a,1,2} AND {1,3} ={a,1,2} n{1,3} = {1}
We can treat OR like union:

{a,1,2} OR {b} ={a,1,2} U{b} ={a,b,1,2}
And NOT like complements:

NoT({a,1,2}) ={a,b,c,1,2,3} —{a,1,2} = {b,c,3}
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Not the only logic
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Not the only logic

@ Fuzzy logic:
» Algebra: monoidal t-norm logic based algebras that are pre-linear
commutative bounded residuated lattices
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Not the only logic

@ Fuzzy logic:
» Algebra: monoidal t-norm logic based algebras that are pre-linear
commutative bounded residuated lattices
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» Based on “constructive provability”
» Denies De Morgan’s laws and double negation
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Not the only logic

@ Fuzzy logic:
» Algebra: monoidal t-norm logic based algebras that are pre-linear
commutative bounded residuated lattices
@ Intuitionistic logic:
» Based on “constructive provability”
» Denies De Morgan’s laws and double negation
» Considers which equations hold in this context using the same
symbols
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Not the only logic

@ Fuzzy logic:
» Algebra: monoidal t-norm logic based algebras that are pre-linear
commutative bounded residuated lattices
@ Intuitionistic logic:
» Based on “constructive provability”
» Denies De Morgan’s laws and double negation
» Considers which equations hold in this context using the same
symbols
Algebra: “Heyting algebras”

v

You can also go back the other way: “invent things” from an algebraic
perspective and apply the lens of logic
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Not the only logic

@ Fuzzy logic:
» Algebra: monoidal t-norm logic based algebras that are pre-linear
commutative bounded residuated lattices
@ Intuitionistic logic:
» Based on “constructive provability”
» Denies De Morgan’s laws and double negation
» Considers which equations hold in this context using the same
symbols
Algebra: “Heyting algebras”

v

You can also go back the other way: “invent things” from an algebraic
perspective and apply the lens of logic

@ Taylor, C. J.: Algebras of incidence structures: representations of
regular double p-algebras. Algebra universalis (2016)
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