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Heyting algebras

Definition
A Heyting algebra is a bounded distributive lattice equipped with a
binary operation→ satisfying the following equivalence:

x ∧ y ≤ z ⇐⇒ y ≤ x → z.

Just as boolean algebras arise from classical logic, Heyting algebras
form the algebraic counterpart to intuitionistic logic.

Theorem
The class of Heyting algebras is an equational class, defined by the
equations for bounded distributive lattices, along with:

1 x ∧ (x → y) = x ∧ y,
2 x ∧ (y → z) = x ∧ [(x ∧ y)→ (x ∧ z)], and,
3 (x ∧ y)→ x = 1.
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Filters
Definition
Let L be a lattice and let F ⊆ L. Then F is a filter provided that:

1 F is an upset, and,
2 if x , y ∈ F then x ∧ y ∈ F .

Definition
Let A be a Heyting algebra and let F be a filter on A. For all x , y ∈ A,
let x ↔ y = (x → y) ∧ (y → x). Let θ(F ) denote the relation given by

θ(F ) := {(x , y) | x ↔ y ∈ F}.

Theorem
Let A be a Heyting algebra and let F be a filter on A. Then θ(F ) is a
congruence on A, and the map θ : Fil(A)→ Con(A) is an
isomorphism, with the inverse given by the map α 7→ 1/α.
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Normal filters

Definition
Let A be a Heyting algebra, let f : An → A be any map and let F be a
filter on A. We say that F is normal with respect to f if, for all
x1, y1, . . . , xn, yn ∈ A,

{xi ↔ yi | i ≤ n} ⊆ F =⇒ f (x1, . . . , xn)↔ f (y1, . . . , yn) ∈ F .

Example
If f is unary, then F is normal with respect to f provided that, for all
x , y ∈ A, if x ↔ y ∈ F then fx ↔ fy ∈ F .

Definition
Let M be a set of operations on A and let F be a filter on A. We say
that F is normal with respect to M if it is normal with respect to f for
every f ∈ M.
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Expanded Heyting algebras

Definition
Let A = 〈A;M,∨,∧,→,0,1〉 is an expanded Heyting algebra (EHA) if
the reduct 〈A;∨,∧,→,0,1〉 is a Heyting algebra and M is a set of
operations on A.

The set M will remain fixed but arbitrary throughout this talk. Recall
that for any filter F on A, the congruence θ(F ) is defined by

θ(F ) := {(x , y) | x ↔ y ∈ F},

and F is normal with respect to a (unary) map f if,

x ↔ y ∈ F =⇒ fx ↔ fy ∈ F .

Theorem
Let A be an EHA and let F be a filter on A. Then θ(F ) is a congruence
on A if and only if F is normal with respect to M.
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Normal filters
From now on, any unquantified A will be a fixed but arbitrary EHA.

Definition
We will say that a filter F on A is a normal filter on A if it is normal with
respect to M. Let Fil(A) denote the lattice of normal filters on A and let
FgA(a) denote the normal filter generated by a.

Definition
Let t be a unary term in the language of A. We say that t is a normal
filter term (on A) provided that, for all x , y ∈ A and every filter F on A:

1 if x ≤ y then tAx ≤ tAy , and,
2 F is a normal filter if and only if F is closed under tA.

Henceforth we will drop the superscripts on term functions.

Example
The identity function is a normal filter term for Heyting algebras.
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Boolean algebras with operators

Definition
Let A be a bounded lattice and let f be a unary operation on A. The
map f is a (dual normal) operator if f (x ∧ y) = fx ∧ fy , and, f1 = 1.

Definition
An algebra A = 〈A; {fi | i ∈ I},∨,∧,¬,0,1〉 is a boolean algebra with
operators (BAO) if 〈A;∨,∧,¬,0,1〉 is a boolean algebra and each fi is
an operator.

Theorem (Folklore)
Let A be a BAO of finite type. Then the term t, defined by

tx =
∧
{fix | i ∈ I}

is a normal filter term on A.
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Heyting algebras with operators

Hasimoto1 developed a construction which produces a partial unary
operation that plays some role in defining congruences. We let [M]
denote the result of his construction. The construction does not apply
in general, so we say that [M] exists if it does.

Lemma (Hasimoto, 2001)
Let A be an EHA of finite type and assume every operation in M is an
operator. Then [M] exists, and

[M]x =
∧
{fix | i ∈ I}.

With the definition, it is not be hard to prove that:
1 If M is finite and [{f}] exists for each f ∈ M, then [M] exists, and,
2 If [M] is term-definable in the language of A, it guarantees a

normal filter term.

1
Hasimoto, Y., Heyting algebras with operators, MLQ Math. Log. Q., 47 (2001), 2, 187–196.
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Heyting algebras with operators

Definition
Let A be a Heyting algebra and let f be a unary operation on A. The
map f is an anti-operator if f (x ∧ y) = fx ∨ fy , and, f1 = 0. Let ¬x be
the unary term defined by ¬x = x → 0.

Lemma (T., 2016)
Let A be an EHA and let f be an anti-operator on A. Then [f ] exists,
and

[f ]x = ¬fx

Example
Let A be an EHA. A unary operation ∼ is a dual pseudocomplement
operation if the following equivalence is satisfied for all x ∈ A:

x ∨ y = 1 ⇐⇒ y ≥ ∼x .
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Dually pseudocomplemented Heyting algebras

Definition
A unary operation ∼ is a dual pseudocomplement operation if the
following equivalence is satisfied for all x ∈ A:

x ∨ y = 1 ⇐⇒ y ≥ ∼x .

Definition
A dually pseudocomplemented Heyting algebra is an EHA with
M = {∼}.

Corollary (Sankappanavar1, 1985)
Let A be a dually pseudocomplemented Heyting algebra. Then ¬∼ is a
normal filter term on A.

1
Sankappanavar, H. P., Heyting algebras with dual pseudocomplementation, Pacific J. Math., 117 (1985), 405–415.
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Some consequences

Lemma
Let A be an EHA, let t be a normal filter term on A, and let dx = x ∧ tx.

1 FgA(x) =
⋃

n∈ω ↑dnx.
2 (y ,1) ∈ CgA(x ,1) if and only if y ≥ dnx for some n ∈ ω.

Lemma
Let A be an EHA, let t be a normal filter term on A, and let dx = x ∧ tx.

1 A is subdirectly irreducible if and only if there exists b ∈ A\{1}
such that for all x ∈ A\{1} there exists n ∈ ω such that dnx ≤ b.

2 A is simple if and only if for all x ∈ A\{1} there exists n ∈ ω such
that dnx = 0.
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EDPC

Definition
A variety V has definable principal congruences (DPC) if there exists a
first-order formula ϕ(x , y , z,w) in the language of V such that, for all
A ∈ V, and all a,b, c,d ∈ A, we have

(a,b) ∈ CgA(c,d) ⇐⇒ A |= ϕ(a,b, c,d).
If ϕ is a finite conjunction of equations then V has equationally
definable principal congruences (EDPC).

Theorem (T., 2016)
Let V be a variety of EHAs with a common normal filter term t, and let
dx = x ∧ tx. Then the following are equivalent:

1 V has EDPC,
2 V has DPC,
3 V |= dn+1x = dnx for some n ∈ ω.
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Proof.
We will prove that if V has DPC then there exists n ∈ ω such that
V |= dn+1x = dnx . Suppose otherwise. Then, for each i ∈ ω there
exists Ai ∈ V and ai ∈ Ai such that d iai 6= d i+1ai . Let A be the product

A :=
∏
i∈ω

Ai .

Now let a = 〈ai | i ∈ ω〉, and let b = 〈d i+1ai | i ∈ ω〉. For each i ∈ ω we
have (d i+1ai ,1i) ∈ CgAi (ai ,1i), and so Ai |= ϕ(d i+1ai ,1i ,ai ,1i). It then
follows that A |= ϕ(b,1,a,1) and so (b,1) ∈ CgA(a,1). But now, from
an earlier lemma, it follows that there exists k ∈ ω such that b ≥ dka.
In particular, then, we have

dkak ≤ dk+1ak = t(dkak ) ∧ dkak ≤ dkak .

It follows that dk+1ak = dkak , a contradiction.

If V |= dn+1x = dnx then the equation defining principal congruences
is given by a↔ b ≥ dn(c ↔ d).
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Discriminator varieties
Definition
A variety is semisimple if every subdirectly irreducible member of V is
simple. If there is a ternary term t in the language of V such that t is a
discriminator term on every subdirectly irreducible member of V, i.e.,

t(x , y , z) =

{
x if x 6= y
z if x = y ,

then V is a discriminator variety.

Theorem (Blok, Köhler and Pigozzi1)
Let V be a variety of any signature. The following are equivalent:

1 V is semisimple, congruence permutable, and has EDPC.
2 V is a discriminator variety.
1

Blok, W. J., P. Köhler, and D. Pigozzi, On the structure of varieties with equationally definable principal congruences. II,
Algebra Universalis, 18 (1984), 3, 334–379.
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A main result

Theorem (T., 2016)
Let V be a variety of dually pseudocomplemented EHAs, assume V
has a normal filter term t, and let dx = ¬∼x ∧ tx. Then the following
are equivalent.

1 V is semisimple.
2 V is a discriminator variety.
3 V has DPC and there exists m ∈ ω such that V |= x ≤ d∼dm¬x.
4 V has EDPC and there exists m ∈ ω such that V |= x ≤ d∼dm¬x.
5 There exists n ∈ ω such that V |= dn+1x = dnx and
V |= d∼dnx = ∼dnx.

This generalises a result by Kowalski and Kracht1 for BAOs and
another result to appear for double-Heyting algebras2

1
Kowalski, T., and M. Kracht, ‘Semisimple varieties of modal algebras’, Studia Logica, 83 (2006), 1-3, 351–363.

2
Taylor, C., ‘Discriminator varieties of double-Heyting algebras’, Rep. Math. Logic, (2016). To appear.
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Constructing normal filter terms
Definition
Let A be a Heyting algebra and let f : An → A be a map. For each
a ∈ A, define the set f↔(a) by

f↔(a) = {f (x1, . . . , xn)↔ f (y1, . . . , yn) | xi ↔ yi ≥ a}

Informally, the set f↔(a) is a set of elements that “should” be in a
normal filter containing a if f is in the signature of A. If the infimum of
f↔(a) exists, then that element encapsulates some of this information.

Definition
For any set K of maps on A, let [K ] : A→ A be the partial operation

[K ]a =
∧⋃

{f↔(a) | f ∈ K}.

We say that [K ] exists in A if it is defined for all a ∈ A. If K = {f} we
will write [f ] instead.
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Constructing normal filter terms

The construction on the previous slide is due to Hasimoto3.

Definition
Assume [M] exists in A. Let A[ denote the algebra

〈A;∨,∧,→, [M],0,1〉.

Theorem (Hasimoto, 2001)
Let A be an EHA and assume [M] exists in A.

1 Fil(A[) ⊆ Fil(A) and Con(A[) ⊆ Con(A).
2 The following are equivalent:

1 [M]a ∈ FgA(a) for all a ∈ A,
2 Fil(A) = Fil(A[), and,
3 Con(A) = Con(A[).

3
Hasimoto, Y., Heyting algebras with operators, MLQ Math. Log. Q., 47 (2001), 2, 187–196.
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Constructing normal filter terms

Lemma (Hasimoto, 2001)
Assume [M] exists in A. Then, for all x , y ∈ A,

1 [M](x ∧ y) = [M]x ∧ [M]y, and,
2 [M]1 = 1.

Lemma
Assume [M] exists in A. If there is a unary term t in the language of A
such that tx = [M]x, then t is a normal filter term on A.

Proof.
Let F be a filter on A. If F is closed under t then by the previous
theorem it is a normal filter on A. Conversely, if F is a normal filter on
A, then whenever (x ,1) ∈ θ(F ) we have (tx , t1) ∈ θ(F ). But t1 = 1,
and so tx ∈ 1/θ(F ) = F .
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