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Heyting Algebras

@ A Heyting algebra is a bounded distributive lattice with the
additional operation —

@ The operation — satisfies the following equivalence
XNZLSy < z<X—>Yy

@ Alternatively, a Heyting algebra is an algebra
(H,v,N,—,0,1) where
@ (H,v,A,0,1)is a bounded distributive lattice
Q x—x~1
Q xA(x=y)=xAy
Q xA(y—=2)=xAN[(xXAYy) = (xA2)
Q zA[(xNy) =X~z
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Heyting Algebras

@ A Heyting algebra is a bounded distributive lattice with the
additional operation —

@ The operation — satisfies the following equivalence
XNZLSy < z<X—>Yy

@ Alternatively, a Heyting algebra is an algebra
(H,v,N,—,0,1) where
@ (H,v,A,0,1)is a bounded distributive lattice
Q x> x~1
QO xA(x—=y)=xAy
Q xA(y—=2)=xAN[(xXAYy) = (xA2)
Q zA[(xNy) =X~z
@ Thus the class of Heyting algebras forms an equational
class
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@ A dual Heyting Algebra is simply the dual of a Heyting
algebra. The dual of — is written — and satisfies the
following equivalence

XVZ>y < z>y—Xx

Chris Taylor Discriminator Varieties of Double-Heyting Algebras



Background Heyting algebras
Double-Heyting algebras
Discriminator varieties

Double-Heyting Algebras

@ A dual Heyting Algebra is simply the dual of a Heyting
algebra. The dual of — is written — and satisfies the
following equivalence

XVZ>y < z>y—Xx

@ An algebra (H,Vv,A,—,—,0,1) is a double-Heyting algebra
if
e (H,v,A,—,0,1)is a Heyting algebra
e (H,v,A,—,0,1) is a dual Heyting algebra
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The Discriminator Term

@ An algebra A is called a discriminator algebra if it has a
discriminator term, i.e. a term t(x, y, z) where

x fx#y

t(x,y,z) = .
(x.y.2) z otherwise
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The Discriminator Term

@ An algebra A is called a discriminator algebra if it has a
discriminator term, i.e. a term t(x, y, z) where

x fx#y

t(x,y,z) = .
(x.y.2) z otherwise

@ Example: finite fields of order p, we have

tx,y,2) =z+ (x — z)(y — x)P~"
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The Discriminator Term

@ An algebra A is called a discriminator algebra if it has a
discriminator term, i.e. a term t(x, y, z) where

Hx,y.2) = {x ifx#£y

z otherwise

@ Example: finite fields of order p, we have

t(xuy7z) =Z+ (X - Z)(y - X)pi‘l

@ A discriminator variety is an equational class where there
is a term t that is a discriminator term on every subdirectly
irreducible member of the class
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@ We define the pseudocomplement of x € Hby x* :=x — 0

Chris Taylor Discriminator Varieties of Double-Heyting Algebras



Normal filters

Congruences in Double-Heyting Algebras Simple double-Heyting algebras

The ** operation

Let H be a double-Heyting algebra.
@ We define the pseudocomplement of x € Hby x* :=x — 0

@ Dually, the dual pseudocomplement of x € H is given by
xTi=1-x
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Normal filters

Congruences in Double-Heyting Algebras Simple double-Heyting algebras

The ** operation

Let H be a double-Heyting algebra.
@ We define the pseudocomplement of x € Hby x* :=x — 0
@ Dually, the dual pseudocomplement of x € H is given by
xT:=1-x
@ We set x%(+*) = x, then define x("1)(++) .— (xn(++))+*
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Normal filters

Congruences in Double-Heyting Algebras Simple double-Heyting algebras

The ** operation

Let H be a double-Heyting algebra.
@ We define the pseudocomplement of x € Hby x* :=x — 0
@ Dually, the dual pseudocomplement of x € H is given by
xT:=1-x
@ We set x%(+*) = x, then define x("1)(++) .— (xn(++))+*

For any x we have

x> x> x> s x>
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Normal filters

Let H be a double-Heyting algebra.
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Normal filters

Let H be a double-Heyting algebra.
@ Foraset F C Hwe say F is afilter if

e Fis an up-set
e F is closed under the operation A
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Normal filters

Let H be a double-Heyting algebra.
@ Foraset F C Hwe say F is afilter if
e Fis an up-set
e F is closed under the operation A
@ If F is also closed under the term operation ** then we say
F is a normal filter on H
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Normal filters

Let H be a double-Heyting algebra.
@ Foraset F C Hwe say F is afilter if

e Fis an up-set
e F is closed under the operation A

@ If F is also closed under the term operation ** then we say
F is a normal filter on H

@ For any x € H, the normal filter generated by x is given by

N(x) = [ )

mew
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Congruences are determined by normal filters

@ Let NF(H) denote the lattice of normal filters of H
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Congruences are determined by normal filters

@ Let NF(H) denote the lattice of normal filters of H
@ For any F € NF(H) define the congruence 6(F) by

(x,y)e6(F)iff xNf=yAfforsomefecF
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Normal filters

Congruences in Double-Heyting Algebras Simple double-Heyting algebras

Congruences are determined by normal filters

@ Let NF(H) denote the lattice of normal filters of H
@ For any F € NF(H) define the congruence 6(F) by

(x,y)e6(F)iff xNf=yAfforsomefecF

The map 6 : NF(H) — Con(H) as given above is an
isomorphism.
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Normal filters

Congruences in Double-Heyting Algebras Simple double-Heyting algebras

Simple implies finite range of **

Lemma

Let H be a double-Heyting algebra. If H is simple, then for every
x € H with x # 1 there exists some ny < w where x™(+*) = 0.

Proof.

If H is simple there can only be two normal filters on H. In
particular, for any x € H with x # 1, we have

N(x)=H
<=0 N(x)

— (Any < w) 0 € x™(+*)

as N(x) = Upe,, TXM+) O
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The class D,

@ The class D, is the equational class of double-Heyting
algebras satisfying the following equation H

(D () ()
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The class D,

Dy, is a discriminator variety for every n < w

Proof sketch.

We omit the proof that if H € D, is subdirectly irreducible, then

x”(+*) . 1 |f X = 1
10 otherwise

Put x <+ y := (x = y) A (y — x). The discriminator term is

[X A (x & y)" IV [2 A (x & y)"E)] O

Chris Taylor Discriminator Varieties of Double-Heyting Algebras



The class Dp

Discriminator Varieties in Double-Heyting Algebras Ul T el

The main result

@ An equational class K is said to be semisimple if every
subdirectly irreducible algebra in K is simple.
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The main result

@ An equational class K is said to be semisimple if every
subdirectly irreducible algebra in K is simple.

@ [t is well-known that every discriminator variety is
semisimple. In general, the converse is not true.
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The main result

@ An equational class K is said to be semisimple if every
subdirectly irreducible algebra in K is simple.

@ [t is well-known that every discriminator variety is
semisimple. In general, the converse is not true.

@ For double-Heyting algebras, it is true
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The main result

@ An equational class K is said to be semisimple if every
subdirectly irreducible algebra in K is simple.

@ [t is well-known that every discriminator variety is
semisimple. In general, the converse is not true.

@ For double-Heyting algebras, it is true

LetV be an equational class of double-Heyting algebras. Then
the following are equivalent.
@ V is a discriminator variety

Q V is semisimple

© vVCD,forsomen<w
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