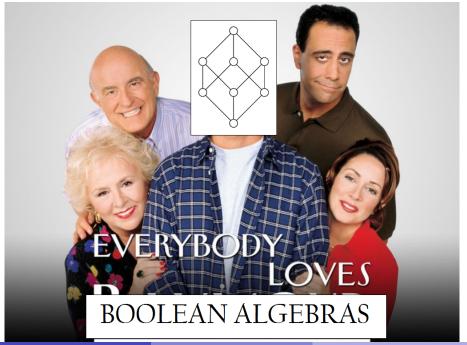
Algebras of incidence structures: representing regular double p-algebras

Christopher Taylor

La Trobe University

Victorian Algebra Conference 2015



Boolean lattices

Theorem

Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- 2 $L \cong \mathcal{P}(B)$ for some finite set B,
- **3** $L \cong \mathbf{2}^n$ for some $n \geq 0$.

Boolean lattices

Theorem

Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- 2 $L \cong \mathcal{P}(B)$ for some finite set B,
- **3** $L \cong \mathbf{2}^n$ for some $n \geq 0$.

Theorem

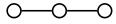
Let B be a boolean lattice. Then the following are equivalent.

- $lacktriangledown B\cong \mathcal{P}(X)$ for some set X.
- B is complete and atomic.
- 3 B is complete and completely distributive.

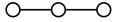
Some other classifications

- Birkhoff's duality for finite distributive lattices
- Stone's duality for boolean algebras
- Priestley's duality for bounded distributive lattices
- Every finite cyclic group is isomorphic to \mathbb{Z}_n for some $n \in \omega$
- Every finite abelian group is isomorphic to $\prod_{i=0}^{n} \mathbb{Z}_{q_i}$ where each q_i is a power of a prime

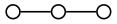
A graph:



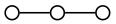
A graph:



A graph:



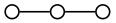
A graph:

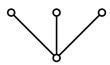


A subgraph:

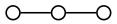
O

A graph:



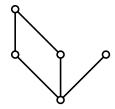


A graph:

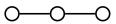


A subgraph:

O C



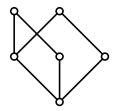
A graph:



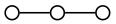
A subgraph:

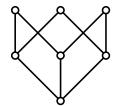
0

0

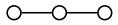


A graph:

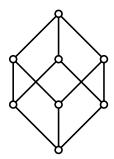




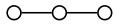
A graph:

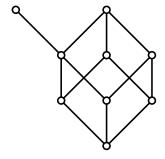


- 0
- 0
- \circ

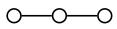


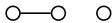
A graph:

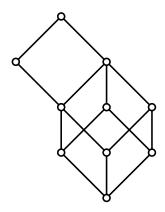




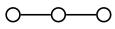
A graph:

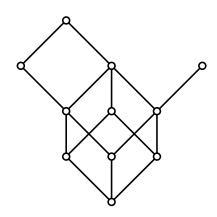




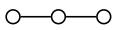


A graph:





A graph:

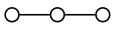


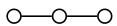
A subgraph:

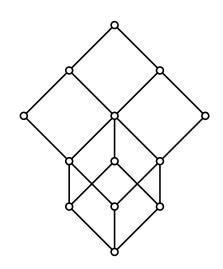
0 0—0



A graph:







The lattice of subgraphs

• Let $G = \langle V, E \rangle$ be a graph. The set of all subgraphs of G induces a bounded distributive lattice, which we will call S(G), where

$$\langle V_1, E_1 \rangle \vee \langle V_2, E_2 \rangle = \langle V_1 \cup V_2, E_1 \cup E_2 \rangle$$
$$\langle V_1, E_1 \rangle \wedge \langle V_2, E_2 \rangle = \langle V_1 \cap V_2, E_1 \cap E_2 \rangle.$$

Note that we permit the empty graph.

The lattice of subgraphs

• Let $G = \langle V, E \rangle$ be a graph. The set of all subgraphs of G induces a bounded distributive lattice, which we will call S(G), where

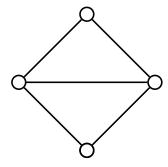
$$\langle V_1, E_1 \rangle \vee \langle V_2, E_2 \rangle = \langle V_1 \cup V_2, E_1 \cup E_2 \rangle$$

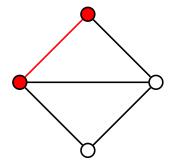
$$\langle V_1, E_1 \rangle \wedge \langle V_2, E_2 \rangle = \langle V_1 \cap V_2, E_1 \cap E_2 \rangle.$$

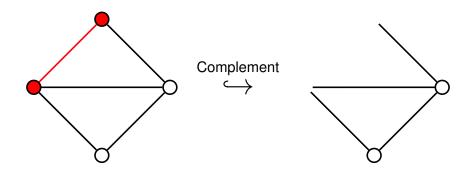
Note that we permit the empty graph.

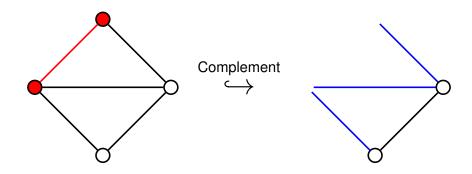
Theorem (Reyes & Zolfaghari, 1996)

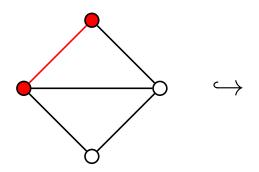
Let G be a graph. Then $\mathcal{S}(G)$ naturally forms a double-Heyting algebra.

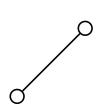


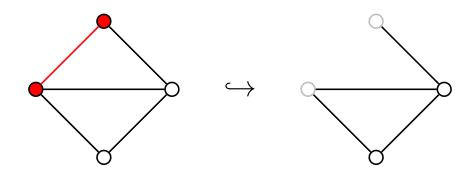


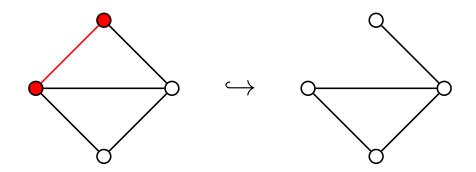












Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

• Example: The lattice of open sets of a topological space X. If U is an open set, then $U^* = \operatorname{int}(X \setminus U)$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

• Example: The lattice of open sets of a topological space X. If U is an open set, then $U^* = \operatorname{int}(X \setminus U)$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *dual pseudocomplement* if there exists a smallest element $x^+ \in L$ such that $x \vee x^+ = 1$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

• Example: The lattice of open sets of a topological space X. If U is an open set, then $U^* = \text{int}(X \setminus U)$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *dual pseudocomplement* if there exists a smallest element $x^+ \in L$ such that $x \vee x^+ = 1$.

• Example: The lattice of closed sets of a topological space X. If C is a closed set, then $U^+ = \operatorname{cl}(X \setminus C)$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *pseudocomplement* if there exists a largest element $x^* \in L$ such that $x \wedge x^* = 0$.

• Example: The lattice of open sets of a topological space X. If U is an open set, then $U^* = \operatorname{int}(X \setminus U)$.

Let *L* be a lattice and let $x \in L$. Then *x* has a *dual pseudocomplement* if there exists a smallest element $x^+ \in L$ such that $x \vee x^+ = 1$.

• Example: The lattice of closed sets of a topological space X. If C is a closed set, then $U^+ = \operatorname{cl}(X \setminus C)$.

Definition

An algebra $\mathbf{A} = \langle A; \lor, \land, 0, 1, *, + \rangle$ is a *double p-algebra* if $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded lattice, and * and + are the pseudocomplement and dual pseudocomplement respectively.

The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra edges. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

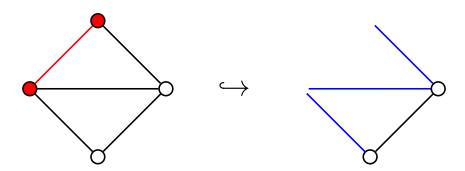
$$H^* = \langle V \backslash V', \{e \in E \backslash E' \mid (\forall x \in e) \ x \in V \backslash V'\} \rangle$$

The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra edges. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

$$H^* = \langle V \backslash V', \{ \textbf{\textit{e}} \in E \backslash E' \mid (\forall x \in \textbf{\textit{e}}) \ x \in V \backslash V' \} \rangle$$

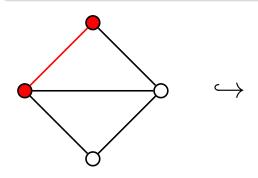


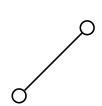
The algebra of subgraphs

Pseudocomplement

Take the set complement of the subgraph and abandon the extra edges. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

$$H^* = \langle V \backslash V', \{ e \in E \backslash E' \mid (\forall x \in e) \ x \in V \backslash V' \} \rangle$$





The algebra of subgraphs

Dual pseudocomplement

Just add the missing vertices back. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

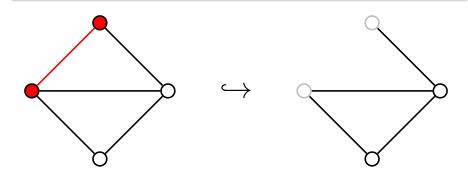
$$H^+ = \langle \textit{V} \backslash \textit{V}' \cup \{\textit{v} \in \textit{V} \mid (\exists \textit{e} \in \textit{E} \backslash \textit{E}') \; \textit{v} \in \textit{e}\}, \textit{E} \backslash \textit{E}' \rangle$$

The algebra of subgraphs

Dual pseudocomplement

Just add the missing vertices back. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

$$H^+ = \langle V \backslash V' \cup \{ v \in V \mid (\exists e \in E \backslash E') \ v \in e \}, E \backslash E' \rangle$$

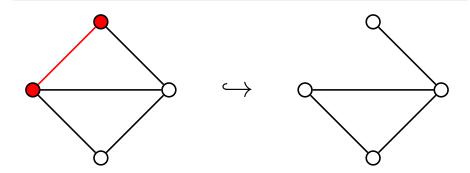


The algebra of subgraphs

Dual pseudocomplement

Just add the missing vertices back. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$:

$$H^+ = \langle V \backslash V' \cup \{ v \in V \mid (\exists e \in E \backslash E') \ v \in e \}, E \backslash E' \rangle$$



Pseudocomplements are not bijective

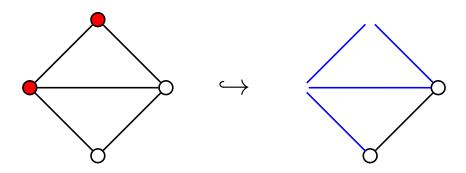
Boolean lattices: no two elements share a complement

Double p-algebras: not true!

Pseudocomplements are not bijective

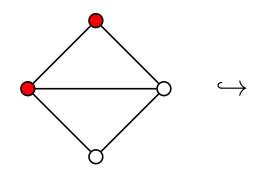
Boolean lattices: no two elements share a complement

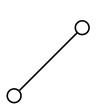
Double p-algebras: not true!



Pseudocomplements are not bijective

Boolean lattices: no two elements share a complement Double p-algebras: not true!





Regular double p-algebras

• Let **A** be an algebra. We say that **A** is *congruence regular* if, for all $\alpha, \beta \in \text{Con}(\mathbf{A})$, we have

$$((\exists x \in A) \ x/\alpha = x/\beta) \implies \alpha = \beta.$$

Example: groups

Regular double p-algebras

• Let **A** be an algebra. We say that **A** is *congruence regular* if, for all $\alpha, \beta \in \text{Con}(\mathbf{A})$, we have

$$((\exists x \in A) \ x/\alpha = x/\beta) \implies \alpha = \beta.$$

Example: groups

Theorem (Varlet, 1972)

Let A be a double p-algebra. Then the following are equivalent.

- A is congruence regular.
- ② $(\forall a, b \in A)$ if $a^* = b^*$ and $a^+ = b^+$ then a = b.

A well-behaved structure

Theorem

Let $G = \langle V, E \rangle$ be a graph. Then S(G) is (the underlying lattice of) a regular double p-algebra.

A well-behaved structure

Theorem

Let $G = \langle V, E \rangle$ be a graph. Then S(G) is (the underlying lattice of) a regular double p-algebra.

Proof.

Let $A = \langle A_V, A_E \rangle$ and $B = \langle B_V, B_E \rangle$ be subgraphs of G. Recall that for a subgraph $H = \langle V', E' \rangle$,

$$H^* = \langle V \backslash V', \{ e \in E \backslash E' \mid (\forall x \in e) \ x \in V \backslash V' \} \rangle$$
 (1)

$$H^{+} = \langle V \backslash V' \cup \{ v \in V \mid (\exists e \in E \backslash E') \ v \in e \}, \underline{E} \backslash \underline{E'} \rangle. \tag{2}$$

Assume $A^* = B^*$ and $A^+ = B^+$. Then from (1) we have $V \setminus A_V = V \setminus B_V$ and from (2) we have $E \setminus A_E = E \setminus B_E$. Hence, A = B.

Some results from the literature

Theorem (Reyes & Zolfaghari, 1996)

Let G be a graph. Then S(G) naturally forms a double-Heyting algebra.

Some results from the literature

Theorem (Reyes & Zolfaghari, 1996)

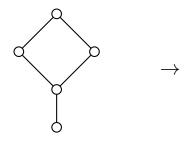
Let G be a graph. Then $\mathcal{S}(G)$ naturally forms a double-Heyting algebra.

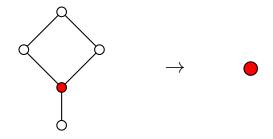
Theorem (Katriňák, 1973)

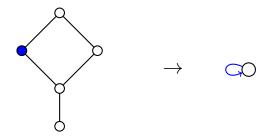
Let **A** be a regular double p-algebra. Then **A** is term-equivalent to a double-Heyting algebra via the term

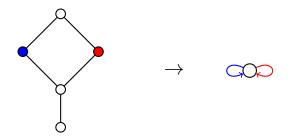
$$x \to y = (x^* \vee y^{**})^{**} \wedge [(x \vee x^*)^+ \vee x^* \vee y \vee y^*],$$

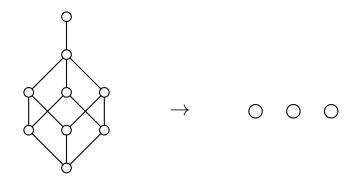
and its dual.

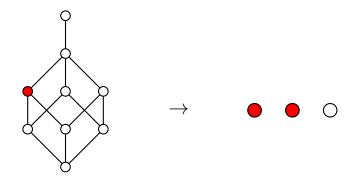


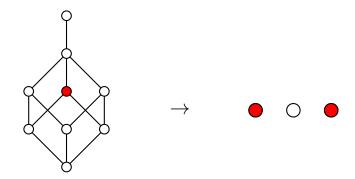


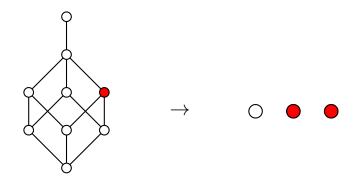


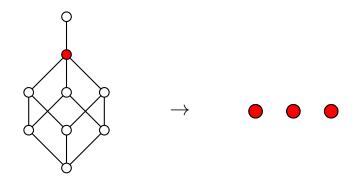


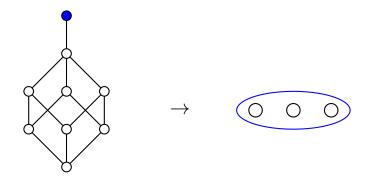












Incidence structures

Definition

An *incidence structure* is a triple $\langle P, L, I \rangle$ where P is a set of points, L is a set of lines and $I \subseteq P \times L$ is an incidence relation describing which points are incident to which lines.

Example

Let
$$P = \{1,2,3\}, L = \{x,y,z,a,b\}$$
, and let
$$I = \{1,2,3\} \times \{x,y\}$$

$$\cup \{1,2\} \times \{z\}$$

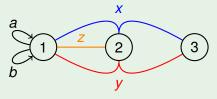
$$\cup \{(1,a),(1,b)\}$$

Incidence structures

Example

Let $P = \{1, 2, 3\}$, $L = \{x, y, z, a, b\}$, and let

$$I = \{1, 2, 3\} \times \{x, y\}$$
$$\cup \{1, 2\} \times \{z\}$$
$$\cup \{(1, a), (1, b)\}$$



Point-preserving substructures

Definition

Let $G = \langle P, L, I \rangle$ be an incidence structure. A *point-preserving* substructure of G is a pair $\langle P', L' \rangle$ such that

- ② for all $\ell \in L'$, if $(p, \ell) \in I$ then $p \in P'$.

The incidence relation is defined implicitly from *G*.

Point-preserving substructures

Definition

Let $G = \langle P, L, I \rangle$ be an incidence structure. A *point-preserving* substructure of G is a pair $\langle P', L' \rangle$ such that

- 2 for all $\ell \in L'$, if $(p, \ell) \in I$ then $p \in P'$.

The incidence relation is defined implicitly from G.

Let S(G) denote the set of all point-preserving substructures of a structure G. This induces a double p-algebra in a similar way to graphs, where

$$\langle P', L' \rangle^* = \langle P \backslash P', \{ \ell \in L \backslash L' \mid (\forall p \in P) \ (p, \ell) \in I \implies p \in P \backslash P' \} \rangle$$

$$\langle P', L' \rangle^+ = \langle P \backslash P' \cup \{ p \in P \mid (\exists \ell \in L \backslash L') \ (p, \ell) \in I \}, L \backslash L' \rangle.$$

The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- 2 $L \cong \mathcal{P}(B)$ for some set B,
- **3** $L \cong \mathbf{2}^n$ for some $n \geq 0$.

The main result (finite version)

Theorem

Let L be a finite lattice. Then the following are equivalent.

- L is a boolean lattice,
- ② $L \cong \mathcal{P}(B)$ for some set B,
- **3** $L \cong \mathbf{2}^n$ for some $n \geq 0$.

Theorem (T., 2015)

Let L be a finite lattice. Then the following are equivalent.

- L is (the underlying lattice of) a regular double p-algebra,
- 2 $L \cong S(G)$ for some incidence structure G,
- **③** $L \cong \mathbf{2}^n \times \mathcal{S}(G)$ for some $n \geq 0$ and some incidence structure G.

The main result

Theorem

Let B be a boolean lattice. Then the following are equivalent.

- **1** $B \cong \mathcal{P}(X)$ for some set X.
- B is complete and atomic.
- B is complete and completely distributive.

The main result

Theorem

Let B be a boolean lattice. Then the following are equivalent.

- $lacktriangledown B\cong \mathcal{P}(X)$ for some set X.
- B is complete and atomic.
- B is complete and completely distributive.

Theorem (T., 2015)

Let **A** be a regular double p-algebra. Then the following are equivalent.

- **0** $\mathbf{A} \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set B and some incidence structure G.
- **2** $\mathbf{A} \cong \mathcal{S}(G)$ for some incidence structure G.
- A is complete, completely distributive and doubly atomic.

Behind the scenes

For a complete lattice \mathbf{L} we say that \mathbf{L} satisfies the join infinite distributivity law (JID) if the following identity holds:

$$x \wedge \bigvee Y = \bigvee \{x \wedge y \mid y \in Y\}.$$

Dually we say that **A** satisfies the meet infinite distributivity law (MID) if the following identity holds:

$$x\vee \bigwedge Y = \bigwedge \{x\vee y\mid y\in Y\}.$$

Theorem (T., 2015)

Let **A** be a complete doubly atomic regular double p-algebra. If **A** satisfies (JID), and for all atoms $a \in \mathbf{A}$ and all coatoms $c \in \mathbf{A}$ we have $a \le c$, then there is an incidence structure G such that $\mathcal{S}(G) \cong \mathbf{A}$. Furthermore, G has no isolated points and no empty lines.

The main result

Theorem (T., 2015)

Let **A** be a regular double p-algebra. The following are equivalent.

- **1** $\mathbf{A} \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set B and some incidence structure G with no isolated points and no empty lines.
- ② $A \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set B and some incidence structure G.
- **3** $\mathbf{A} \cong \mathcal{S}(G)$ for some incidence structure G.
- A is complete, completely distributive and doubly atomic.
- A is complete, satisfies (JID) and (MID) and is doubly atomic.

The main result

Theorem (T., 2015)

Let **A** be a regular double p-algebra. The following are equivalent.

- **1** $\mathbf{A} \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set B and some incidence structure G with no isolated points and no empty lines.
- ② $A \cong \mathcal{P}(B) \times \mathcal{S}(G)$ for some set B and some incidence structure G.
- **3** $\mathbf{A} \cong \mathcal{S}(G)$ for some incidence structure G.
- A is complete, completely distributive and doubly atomic.
- A is complete, satisfies (JID) and (MID) and is doubly atomic.

Theorem (T., 2015)

Let **A** be a regular double p-algebra. Then there is an incidence structure G such that **A** is isomorphic to a subalgebra of S(G).