Expansions of dually pseudocomplemented Heyting algebras

Christopher Taylor

Supervised by Tomasz Kowalski and Brian Davey

Victorian Algebra Conference, November 2016

Relative complement of 12 with respect to 1 is equal to 1 \vee 34.

Relative complement of 12 with respect to 1 is equal to $1 \vee 34$. More generally: relative complement of *x* with respect to *y* is $y \vee \neg x$

Relative complement of 12 with respect to 1 is equal to $1 \vee 34$. More generally: relative complement of *x* with respect to *y* is $y \vee \neg x$...also known as $x \rightarrow y$

Heyting algebras

Definition

A *Heyting algebra* is a bounded distributive lattice equipped with a binary operation \rightarrow satisfying the following equivalence:

 $x \wedge y \leq z \iff y \leq x \to z$.

Heyting algebras

Definition

A *Heyting algebra* is a bounded distributive lattice equipped with a binary operation \rightarrow satisfying the following equivalence:

 $x \wedge y \leq z \iff y \leq x \to z$.

Just as boolean algebras arise from classical logic, Heyting algebras form the algebraic counterpart to intuitionistic logic.

Heyting algebras

Definition

A *Heyting algebra* is a bounded distributive lattice equipped with a binary operation \rightarrow satisfying the following equivalence:

 $x \wedge y \leq z \iff y \leq x \to z$.

Just as boolean algebras arise from classical logic, Heyting algebras form the algebraic counterpart to intuitionistic logic.

Theorem

The class of Heyting algebras is an equational class, defined by the equations for bounded distributive lattices, along with:

$$
\bullet \quad x \wedge (x \rightarrow y) = x \wedge y,
$$

$$
x \wedge (y \rightarrow z) = x \wedge [(x \wedge y) \rightarrow (x \wedge z)], \text{ and,}
$$

$$
\bullet (x \wedge y) \rightarrow x = 1.
$$

Overview

1 Expansions of Heyting algebras

- \triangleright Congruences
- \triangleright Dually pseudocomplemented Heyting algebras
- 2 Applications
	- \blacktriangleright Subdirectly irreducibles
	- \triangleright Characterising EDPC, semisimplicity and discriminator varieties

Filters

Definition

Let **L** be a lattice and let $F \subseteq L$. Then *F* is a *filter* provided that:

- **1** *F* is an upset, and,
- 2 if $x, y \in F$ then $x \wedge y \in F$.

Filters

Definition

Let **L** be a lattice and let $F \subset L$. Then F is a *filter* provided that:

- **1** *F* is an upset, and,
- ² if *x*, *y* ∈ *F* then *x* ∧ *y* ∈ *F*.

For a Heyting algebra **A**, and a filter *F* of **A**, the binary relation

$$
\theta(F):=\{(x,y)\mid x\leftrightarrow y\in F\}
$$

is a congruence on **A**, where $x \leftrightarrow y = (x \rightarrow y) \land (y \rightarrow x)$.

Filters

Definition

Let **L** be a lattice and let $F \subset L$. Then F is a *filter* provided that:

- **1** *F* is an upset, and,
- ² if *x*, *y* ∈ *F* then *x* ∧ *y* ∈ *F*.

For a Heyting algebra **A**, and a filter *F* of **A**, the binary relation

$$
\theta(F) := \{(x,y) \mid x \leftrightarrow y \in F\}
$$

is a congruence on **A**, where $x \leftrightarrow y = (x \rightarrow y) \land (y \rightarrow x)$.

Fundamental theorem of Heyting algebras

Every congruence on a Heyting algebra arises from a filter.

Definition

Let **A** be a Heyting algebra, let *f* : *A ⁿ* → *A* be any map and let *F* be a filter on **A**. We say that *F* is *normal with respect to f* if, for all *x*₁, *y*₁, *, x_n*, *y_n* ∈ *A*,

 $\{x_i \leftrightarrow y_i \mid i \leq n\} \subseteq F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.$

Definition

Let **A** be a Heyting algebra, let *f* : *A ⁿ* → *A* be any map and let *F* be a filter on **A**. We say that *F* is *normal with respect to f* if, for all *x*₁, *y*₁, *, x_n*, *y_n* ∈ *A*,

$$
\{x_i \leftrightarrow y_i \mid i \leq n\} \subseteq F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.
$$

Example

If *f* is unary, then *F* is normal with respect to *f* provided that, for all *x*, *y* ∈ *A*, if *x* ↔ *y* ∈ *F* then *fx* ↔ *fy* ∈ *F*.

Expanded Heyting algebras

Definition

An algebra $A = \langle A; M, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is an *expanded Heyting algebra* (EHA) if the reduct $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and *M* is a set of operations on *A*.

Expanded Heyting algebras

Definition

An algebra $A = \langle A; M, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is an *expanded Heyting algebra* (EHA) if the reduct $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and *M* is a set of operations on *A*.

Recall that for any filter *F* on **A**, the congruence $\theta(F)$ is defined by

$$
\theta(F):=\{(x,y)\mid x\leftrightarrow y\in F\},\
$$

and *F* is normal with respect to a (unary) map *f* if,

$$
x \leftrightarrow y \in F \implies fx \leftrightarrow fy \in F.
$$

Expanded Heyting algebras

Definition

An algebra $\mathbf{A} = \langle A; M, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is an *expanded Heyting algebra* (EHA) if the reduct $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and *M* is a set of operations on *A*.

Recall that for any filter *F* on **A**, the congruence $\theta(F)$ is defined by

$$
\theta(F):=\{(x,y)\mid x\leftrightarrow y\in F\},\
$$

and *F* is normal with respect to a (unary) map *f* if,

$$
x \leftrightarrow y \in F \implies fx \leftrightarrow fy \in F.
$$

Theorem

Let **A** be an EHA and let F be a filter on **A**. Then θ (F) is a congruence *on* **A** *if and only if F is normal with respect to M.*

Throughout the rest of this talk, any unquantified **A** will be a fixed but arbitrary EHA.

Throughout the rest of this talk, any unquantified **A** will be a fixed but arbitrary EHA.

Definition

We will say that a filter *F* on **A** is a *normal filter on* **A** if it is normal with respect to *M*.

Throughout the rest of this talk, any unquantified **A** will be a fixed but arbitrary EHA.

Definition

We will say that a filter *F* on **A** is a *normal filter on* **A** if it is normal with respect to *M*.

Definition

Let *t* be a unary term in the language of **A**. We say that *t* is a *normal filter term* (*on* **A**) provided that, for all $x, y \in A$ and every filter *F* on **A**:

• if
$$
x \le y
$$
 then $t^A x \le t^A y$, and,

² *F* is a normal filter if and only if *F* is closed under *t* **A**.

Throughout the rest of this talk, any unquantified **A** will be a fixed but arbitrary EHA.

Definition

We will say that a filter *F* on **A** is a *normal filter on* **A** if it is normal with respect to *M*.

Definition

Let *t* be a unary term in the language of **A**. We say that *t* is a *normal filter term* (*on* **A**) provided that, for all $x, y \in A$ and every filter *F* on **A**:

• if
$$
x \le y
$$
 then $t^A x \le t^A y$, and,

² *F* is a normal filter if and only if *F* is closed under *t* **A**.

Example

The identity function is a normal filter term for Heyting algebras.

A richer example – boolean algebras with operators

Definition

Let **A** be a bounded lattice and let *f* be a unary operation on *A*. The map *f* is a (dual normal) *operator* if $f(x \wedge y) = fx \wedge fy$, and, $f1 = 1$.

A richer example – boolean algebras with operators

Definition

Let **A** be a bounded lattice and let *f* be a unary operation on *A*. The map *f* is a (dual normal) *operator* if $f(x \wedge y) = fx \wedge fy$, and, $f1 = 1$.

Definition

An algebra **A** = h*A*; {*fⁱ* | *i* ∈ *I*}, ∨, ∧, ¬, 0, 1i is a *boolean algebra with operators* (BAO) if $\langle A; \vee, \wedge, \neg, 0, 1 \rangle$ is a boolean algebra and each f_i is an operator.

A richer example – boolean algebras with operators

Definition

Let **A** be a bounded lattice and let *f* be a unary operation on *A*. The map *f* is a (dual normal) *operator* if $f(x \wedge y) = fx \wedge fy$, and, $f1 = 1$.

Definition

An algebra **A** = h*A*; {*fⁱ* | *i* ∈ *I*}, ∨, ∧, ¬, 0, 1i is a *boolean algebra with operators* (BAO) if $\langle A; \vee, \wedge, \neg, 0, 1 \rangle$ is a boolean algebra and each f_i is an operator.

Theorem ("Folklore")

Let **A** *be a BAO of finite type. Then the term t, defined by*

$$
tx = \bigwedge \{f_i x \mid i \in I\}
$$

is a normal filter term on **A***.*

Let **A** be a Heyting algebra and let $f: A \rightarrow A$ be a unary map. For each $a \in A$, define the set

$$
f^{\leftrightarrow}(a) = \{ fx \leftrightarrow fy \mid x \leftrightarrow y \geq a \}.
$$

Now define the partial operation [*M*] by

$$
[M]a = \bigwedge \bigcup \{f^{\leftrightarrow}(a) \mid f \in M\}.
$$

If it is defined everywhere then we say that [*M*] *exists in* **A**.

Recall that *M* is the set of extra operations on the Heyting algebra.

Lemma (Hasimoto, 2001)

If [*M*] *exists, then* [*M*] *is a* (*dual normal*) *operator.*

Recall that *M* is the set of extra operations on the Heyting algebra.

Lemma (Hasimoto, 2001)

If [*M*] *exists, then* [*M*] *is a* (*dual normal*) *operator.*

Lemma (Hasimoto, 2001)

Assume that M is finite, and every map in M is an operator. Then [*M*] *exists, and*

$$
[M]x = \bigwedge \{ fx \mid f \in M \}
$$

Recall that *M* is the set of extra operations on the Heyting algebra.

Lemma (Hasimoto, 2001)

If [*M*] *exists, then* [*M*] *is a* (*dual normal*) *operator.*

Lemma (Hasimoto, 2001)

Assume that M is finite, and every map in M is an operator. Then [*M*] *exists, and*

$$
[M]x = \bigwedge \{ fx \mid f \in M \}
$$

Lemma (T., 2016)

If there exists a term t in the language of **A** *such that t*^{**A**_{*X*} = [*M*]*x, then*} *t is a normal filter term.*

Definition

Let **A** be a Heyting algebra and let *f* be a unary operation on *A*. The map *f* is an *anti-operator* if $f(x \wedge y) = f(x \vee f(y))$, and, $f1 = 0$. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Definition

Let **A** be a Heyting algebra and let *f* be a unary operation on *A*. The map *f* is an *anti-operator* if $f(x \wedge y) = fx \vee fv$, and, $f1 = 0$. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Lemma (T., 2016)

Let **A** *be an EHA and let f be an anti-operator on A. Then* [*f*] *exists, and*

$$
[f]x=\neg fx
$$

Definition

Let **A** be a Heyting algebra and let *f* be a unary operation on *A*. The map *f* is an *anti-operator* if $f(x \wedge y) = f(x \vee f(y))$, and, $f1 = 0$. Let $\neg x$ be the unary term defined by $\neg x = x \rightarrow 0$.

Lemma (T., 2016)

Let **A** *be an EHA and let f be an anti-operator on A. Then* [*f*] *exists, and*

$$
[f]x=\neg fx
$$

Example (Meskhi, 1982)

If **A** is a Heyting algebra with involution, i.e. a Heyting algebra equipped with a single unary operation *i* that is a dual automorphism. The map $tx := \neg ix$ is a normal filter term on **A**.

The dual pseudocomplement

Example

Let **A** be an EHA. A unary operation ∼ is a *dual pseudocomplement operation* if the following equivalence is satisfied for all $x \in A$:

 $x \vee y = 1 \iff y \geq \sim x$.

The dual pseudocomplement

Example

Let **A** be an EHA. A unary operation ∼ is a *dual pseudocomplement operation* if the following equivalence is satisfied for all $x \in A$:

x ∨ *y* = 1 ⇔ *y* ≥ ~*x*.

Corollary (Sankappanavar, 1985)

Let **A** *be a dually pseudocomplemented Heyting algebra. Then* ¬∼ *is a normal filter term on* **A***.*

Lemma

Let **A** *be an EHA, let t be a normal filter term on* **A***, and let* $dx = x \wedge tx$ *. Then* $(y, 1) \in \text{Cg}^{\mathbf{A}}(x, 1)$ *if and only if* $y \ge d^n x$ *for some n* $\in \omega$ *.*

Lemma

Let **A** *be an EHA, let t be a normal filter term on* **A***, and let* $dx = x \wedge tx$ *.*

- **1 A** *is subdirectly irreducible if and only if there exists* $b \in A \setminus \{1\}$ *such that for all* $x \in A \setminus \{1\}$ *there exists n* $\in \omega$ *such that* $d^n x < b$.
- ² **A** *is simple if and only if for all x* ∈ *A*\{1} *there exists n* ∈ ω *such that* $d^n x = 0$.

x

tx

Lemma

Let **A** *be an EHA, let t be a normal filter term on* **A***, and let* $dx = x \wedge tx$ *. Then* $(y, 1) \in \text{Cg}^{\mathbf{A}}(x, 1)$ *if and only if* $y \ge d^n x$ *for some n* $\in \omega$ *.*

Lemma

Let **A** *be an EHA, let t be a normal filter term on* **A***, and let* $dx = x \wedge tx$ *.*

- **1 A** *is subdirectly irreducible if and only if there exists* $b \in A \setminus \{1\}$ *such that for all* $x \in A \setminus \{1\}$ *there exists n* $\in \omega$ *such that* $d^n x < b$.
- ² **A** *is simple if and only if for all x* ∈ *A*\{1} *there exists n* ∈ ω *such that* $d^n x = 0$.

EDPC

Definition

A variety V has *definable principal congruences* (DPC) if there exists a first-order formula φ (*x*, *y*, *z*, *w*) in the language of *V* such that, for all **A** ∈ V , and all *a*, *b*, *c*, *d* ∈ *A*, we have

$$
(a,b)\in Cg^{\mathbf{A}}(c,d)\iff \mathbf{A}\models \varphi(a,b,c,d).
$$

If φ is a finite conjunction of equations then $\mathcal V$ has *equationally definable principal congruences* (EDPC).

Theorem (T., 2016)

Let V *be a variety of EHAs with a common normal filter term t, and let* $dx = x \wedge tx$. Then the following are equivalent:

- ¹ V *has EDPC,*
- ² V *has DPC,*
	- 3 $\mathcal{V} \models d^{n+1}x = d^{n}x$ for some $n \in \omega$.

Discriminator varieties

Definition

A variety is *semisimple* if every subdirectly irreducible member of V is simple. If there is a ternary term t in the language of V such that t is a discriminator term on every subdirectly irreducible member of V , i.e.,

$$
t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{if } x = y, \end{cases}
$$

then V is a *discriminator variety*.

Theorem (Blok, Köhler and Pigozzi, 1984)

Let V *be a variety of any signature. The following are equivalent:*

- ¹ V *is semisimple, congruence permutable, and has EDPC.*
- ² V *is a discriminator variety.*

The main result

Theorem (T., 2016)

Let V *be a variety of dually pseudocomplemented EHAs, assume* V *has a normal filter term t, and let dx* = ¬∼*x* ∧ *tx. Then the following are equivalent.*

- ¹ V *is semisimple.*
- ² V *is a discriminator variety.*
- ³ V *has DPC and there exists m* ∈ ω *such that* V |= *x* ≤ *d*∼*d ^m*¬*x.*
- ⁴ V *has EDPC and there exists m* ∈ ω *such that* V |= *x* ≤ *d*∼*d ^m*¬*x.*
- **5** There exists $n \in \omega$ such that $\mathcal{V} \models d^{n+1}x = d^n x$ and V |= *d*∼*d ⁿx* = ∼*d ⁿx.*

This generalises a result by Kowalski and Kracht (2006) for BAOs and a result by the author to appear for double-Heyting algebras.