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Ordinals

Definition 1
Recall that an ordinal is a set x that is both transitive and well-ordered
by ∈. That is, x is an ordinal if:

1 if x ∈ y and y ∈ z then z ∈ x (transitivity), and
2 every non-empty subset of x has a minimum element

(well-ordered).

Definition 2
Let α be an ordinal. The successor of α is the ordinal S(α) = α ∪ {α}.
If α = S(β) for some ordinal β then α is a successor ordinal, and
otherwise it is a limit ordinal.

Examples will appear in chalk.
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Ordinal arithmetic

Definition 3

β + α =


β if α = 0
S(β + γ) if α = S(γ)⋃
{β + γ | γ < α} otherwise.

β · α =


0 if α = 0
β · γ + β if α = S(γ)⋃
{β · γ | γ < α} otherwise.

βα =


1 if α = 0
βγ · β if α = S(γ)⋃
{βγ | γ < α} otherwise.
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Cantor Normal Form

Definition 4
Let ε0 denote the smallest ordinal α such that ωα = α.

Theorem (Cantor Normal Form)
Let α be an ordinal. Then there exists natural numbers n1, . . . ,nk and
ordinals β ≥ α1 > · · · > αk ≥ 0 such that

β = ωα1 · n1 + · · ·+ ωαk · nk .

Moreover, if β < ε0 then α1 6= β.
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Peano Arithmetic

Definition 5 (First-order Peano arithmetic)
Language: 〈+, ·,0〉.

Axioms:
1 0 6= S(x).
2 S(x) = S(y) =⇒ x = y .
3 x + 0 = x .
4 x + S(y) = S(x + y).
5 x · 0 = 0.
6 x · S(y) = x · y + x .

Induction schema:
∀y (ϕ(0, y) ∧ ∀x (ϕ(x , y)→ ϕ(S(x), y))→ ∀x ϕ(x , y)).

for all formulas ϕ.
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Recursive functions

Definition 6 (Initial functions)
The initial functions are the following three classes of functions.

1 The constant functions. For all n, k ≥ 0, the function f : Nk → N
given by

f (x1, . . . , xk ) = n.

2 The successor function S : N→ N, seen before.
3 The projection functions. For every i , k ≥ 1 such that i ≤ k , the

function πk
i : N

k → N given by

πk
i (x1, . . . , xk ) = xi .
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Recursive functions

Definition 7 (Primitive recursion)
A function is primitive recursive if it is an initial function, or if it arises
from applications of composition and primitive recursion to primitive
recursive functions.

1 Composition. If h : Nm → N and g1, . . . ,gm : Nk → N are all
functions, then h ◦ (g1, . . . ,gm) : Nk → N is given by

h ◦ (g1, . . . ,gm)(x) = h(g1(x), . . . ,gm(x)).
2 Primitive recursion. If g : Nk → N and h : Nk+2 → N are functions

then the primitive recursion operator produces the function
ρg,h : Nk+1 → N, defined by

ρg,h(0, x) = g(x)
ρg,h(y + 1, x) = h(y , ρg,h(y , x), x).
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Primitive recursive functions

The following functions are all primitive recursive:
1 Addition: x + y .
2 Multiplication: x · y .
3 Exponentiation: xy .
4 Quotient w.r.t. q: if x = kq + r returns kq.
5 Remainder w.r.t. q: if x = kq + r returns r .
6 Predecessor: if x > 0 return x − 1, otherwise return 0.
7 Restricted subtraction: x ·− y = max{0, x − y}
8 pi : the i + 1-st prime number.
9 Primality: if x is prime return 1, else 0.

10 cap(x) =

{
1 if x > 0,
0 otherwise.

...and much more!
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Recursive functions

Definition 8 (µ-recursion)
A partial function is µ-recursive if it is an initial function, or if it arises
from applications of composition, primitive recursion and minimisation
to µ-recursive functions.

1 Minimisation. Let f : Nk+1 → N be a proper function. Then
minisation produces the function µf , defined by

µf (x1, . . . , xk ) =

{
min{z | f (z, x1, . . . , xk ) = 0} if it exists
undefined otherwise.

Chris Taylor Fun and games with ordinals 10 / 20



Recursive functions

Definition 8 (µ-recursion)
A partial function is µ-recursive if it is an initial function, or if it arises
from applications of composition, primitive recursion and minimisation
to µ-recursive functions.

1 Minimisation. Let f : Nk+1 → N be a proper function. Then
minisation produces the function µf , defined by

µf (x1, . . . , xk ) =

{
min{z | f (z, x1, . . . , xk ) = 0} if it exists
undefined otherwise.

Chris Taylor Fun and games with ordinals 10 / 20



Recursive relations

Henceforth, we will just say recursive instead of µ-recursive.

Theorem 9
Let f : Nn → N be recursive. Then there is a formula ϕ(y , x1, . . . , xn) in
the language of P such that

1 f (x1, . . . , xn) = y implies N |= ϕ(y , x1, . . . , xn), and
2 f (x1, . . . , xn) 6= y implies N |= ¬ϕ(y , x1, . . . , xn).

Definition 10
An n-ary relation R is recursive if there exists a recursive function
fR : Nn → N such that

fR(x1, . . . , xn) =

{
1 if (x1, . . . , xn) ∈ R
0 otherwise.
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Recursive relations

Example 11
Let R and S be n-ary recursive relations.

fR(x1, . . . , xn) · fS(x1, . . . , xn) =

{
1 if (x1, . . . , xn) ∈ R ∩ S
0 otherwise,

cap(fR(x1, . . . , xn) + fS(x1, . . . , xn)) =

{
1 if (x1, . . . , xn) ∈ R ∪ S
0 otherwise,

1 ·− fR(x1, . . . , xn) =

{
1 if (x1, . . . , xn) /∈ R
0 otherwise.

The usual ordering on N is also recursive, since

cap(y ·− x) =

{
1 if x < y
0 otherwise.
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Recursive ordinals

Definition 12
An ordinal α is said to be a recursive ordinal if there is a recursive
binary relation Rα ⊆ N2 with order type α.

Corollary 13
Let α be a recursive ordinal. Then there is a formula ϕ(x , y) in the
language of P such that

(x , y) ∈ Rα ⇐⇒ N |= ϕ(x , y).

Fact 14
Every ordinal less than or equal to ε0 is recursive.
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Transfinite induction

Definition 15
Let α be a recursive ordinal. We let TI(α) denote the axiom schema

[∀x(∀y(yRαx =⇒ ϕ(y)) =⇒ ϕ(x)] =⇒ ∀xϕ(x),
which we call transfinite induction up to α.

Theorem 16 (Gentzen, 1936)
If P ` TI(ε0) then P can prove its own consistency.

Theorem 17 (Gödel’s second incompleteness theorem)
If P can prove its own consistency then P is inconsistent.
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Gentzen’s Theorem

Gentzen defines a notion of “reduction procedure” for
proofs in Peano arithmetic. For a given proof, such a
procedure produces a tree of proofs, with the given one
serving as the root of the tree, and the other proofs being, in
a sense, “simpler” than the given one. This increasing
simplicity is formalized by attaching an ordinal less than ε0 to
every proof, and showing that, as one moves down the tree,
these ordinals get smaller with every step. He then shows
that if there were a proof of a contradiction, the reduction
procedure would result in an infinite descending sequence of
ordinals below ε0, produced by a primitive recursive operation
on proofs corresponding to a quantifier-free
formula. (“Gentzen’s consistency proof”, Wikipedia)

Chris Taylor Fun and games with ordinals 15 / 20



True but not provable

Chris Taylor Fun and games with ordinals 16 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 2 + 2 + 1.

If n = 45955 and b = 3, we have
45955 = 3 · 2 + 3 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 24 + 23 + 1.

If n = 45955 and b = 3, we have
45955 = 3 · 2 + 3 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 222
+ 23 + 1.

If n = 45955 and b = 3, we have
45955 = 3 · 2 + 3 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 222
+ 22+1 + 1.

If n = 45955 and b = 3, we have
45955 = 3 · 2 + 3 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 222
+ 22+1 + 1.

If n = 45955 and b = 3, we have
45955 = 39 · 2 + 38 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 222
+ 22+1 + 1.

If n = 45955 and b = 3, we have
45955 = 332 · 2 + 38 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Some notation

Definition 18
Let n be a natural number. The hereditary base b notation of n is
defined recursively. If n < b, then write n as n. Otherwise, write n in
base b, with all the exponents also written in hereditary base b
notation.

Example 19
If n = 25 and b = 2, we have

25 = 222
+ 22+1 + 1.

If n = 45955 and b = 3, we have
45955 = 332 · 2 + 33·2+2 + 33 + 1

Chris Taylor Fun and games with ordinals 17 / 20



Goodstein’s sequence

Definition 20
Let Rep(x ,a,b) denote the result of writing x in hereditary base a
notation, then replacing every a with a b.

Example 21

25 = 222
+ 22+1 + 1, so

Rep(25,2,3) = 333
+ 33+1 + 1 = 7625597485069,

45955 = 39 · 2 + 38 + 33 + 1, so

Rep(45955,3,5) = 552 · 2 + 55·2+2 + 55 + 1 = 596046447998050001.
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Goodstein’s sequence

Definition 22
Let f : N→ N be a non-decreasing function. We say that f is valid if
f (0) ≥ 2. For a valid function f , define the Goodstein sequence for f
starting at n, written Gf

n, as follows:

Gf
n(0) = n

Gf
n(k + 1) = Rep(Gf

n(k), f (k), f (k + 1))− 1.

Theorem 23
Let f be a valid function. Then for all n there exists r such that
Gf

n(r) = 0.
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True but not provable

Theorem 24 (Kirby & Paris, 1982)
Let f (x) = x + 2. Then

N |= ∀m∃r Gf
n(r) = 0,

but
P 0 ∀m∃r Gf

n(r) = 0.

For n = 4, the required r is
3 · 2402,653,211 − 3.
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