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H+ algebras

A dually pseudocomplemented Heyting algebra is an algebra
A = 〈A;∨,∧,→,∼,0,1〉 such that:

〈A;∨,∧,→,0,1〉 is a Heyting algebra, and,
∼ is a dual pseudocomplement operation, i.e.,

x ∨ y = 1 ⇐⇒ y ≥ ∼x .

For convenience we will abbreviate it to H+ algebra. Let ¬x = x → 0.

Theorem
Congruences on a H+ algebra are determined by the term dx := ¬∼x.

What the phrase “are determined by” means is a topic for another time.
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The splitting lemma

Let H+ denote the variety of H+ algebras. Recall that the diagram of a
finite H+ algebra A is the term

∆A =
∧
{[xa∧b ↔ (xa ∧ xb)] ∧ [xa∨b ↔ (xa ∨ xb)] ∧ [xa→b ↔ (xa → xb)]

∧ [x∼a ↔ ∼xa] ∧ [x0 ↔ 0] ∧ [x1 ↔ 1] | a,b ∈ A}

Lemma
Let V be a subvariety of H+ and let A ∈ Vfin be subdirectly irreducible.
The following are equivalent:

1 A is not a splitting algebra in V,
2 (∀i ∈ ω)(∃B ∈ V) A /∈ V(B) and B 2 d i∆A = 0.
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The splitting lemma

What if we can find a simple algebra B instead?

Fact
Let A ∈ H+

fin. Then A is simple if and only if A is subdirectly irreducible.

Lemma
Let A, B be simple H+ algebras. Then A ∈ V(B) if and only if A � B.

Hence, condition (2) of the splitting lemma is implied by:

(∀i ∈ ω)(∃B ∈ Vfsi) A � B and B 2 d i∆A = 0.
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Duality for finite H+ algebras

Let H+
fin be the category whose objects are finite double-Heyting

algebras and whose morphisms are H+ homomorphisms.

Let Ofin be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ϕ : X → Y
satisfying the following for all x ∈ X :

I ϕ(↑x) = ↑ϕ(x), and,
I ϕ(min(X ) ∩ ↓x) = min(Y ) ∩ ↓ϕ(x).

Fact
H+

fin and Ofin are dually equivalent categories.

An ordered set X produces the algebra 〈U(X ),∪,∩,→,∼,∅,X 〉,
where:

U → V = X\↓(U\V ),
∼U = ↑(X\U), and,
dnU = X\(↓↑)n(X\U).

Chris Taylor Splittings GA Seminar, 4 May, 2017 5 / 21



Duality for finite H+ algebras

Let H+
fin be the category whose objects are finite double-Heyting

algebras and whose morphisms are H+ homomorphisms.
Let Ofin be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ϕ : X → Y
satisfying the following for all x ∈ X :

I ϕ(↑x) = ↑ϕ(x), and,
I ϕ(min(X ) ∩ ↓x) = min(Y ) ∩ ↓ϕ(x).

Fact
H+

fin and Ofin are dually equivalent categories.

An ordered set X produces the algebra 〈U(X ),∪,∩,→,∼,∅,X 〉,
where:

U → V = X\↓(U\V ),
∼U = ↑(X\U), and,
dnU = X\(↓↑)n(X\U).

Chris Taylor Splittings GA Seminar, 4 May, 2017 5 / 21



Duality for finite H+ algebras

Let H+
fin be the category whose objects are finite double-Heyting

algebras and whose morphisms are H+ homomorphisms.
Let Ofin be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ϕ : X → Y
satisfying the following for all x ∈ X :

I ϕ(↑x) = ↑ϕ(x), and,
I ϕ(min(X ) ∩ ↓x) = min(Y ) ∩ ↓ϕ(x).

Fact
H+

fin and Ofin are dually equivalent categories.

An ordered set X produces the algebra 〈U(X ),∪,∩,→,∼,∅,X 〉,
where:

U → V = X\↓(U\V ),
∼U = ↑(X\U), and,
dnU = X\(↓↑)n(X\U).

Chris Taylor Splittings GA Seminar, 4 May, 2017 5 / 21



Duality for finite H+ algebras

Let H+
fin be the category whose objects are finite double-Heyting

algebras and whose morphisms are H+ homomorphisms.
Let Ofin be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ϕ : X → Y
satisfying the following for all x ∈ X :

I ϕ(↑x) = ↑ϕ(x), and,
I ϕ(min(X ) ∩ ↓x) = min(Y ) ∩ ↓ϕ(x).

Fact
H+

fin and Ofin are dually equivalent categories.

An ordered set X produces the algebra 〈U(X ),∪,∩,→,∼,∅,X 〉,
where:

U → V = X\↓(U\V ),
∼U = ↑(X\U), and,
dnU = X\(↓↑)n(X\U).

Chris Taylor Splittings GA Seminar, 4 May, 2017 5 / 21



Duality for finite H+ algebras

A finite ordered set X is connected if for every x ∈ X there exists n ∈ ω
such that lnx = X , where lx = ↑x ∪ ↓x .

Fact
A finite H+ algebra A is simple if and only if J (A) is connected.

Fact
Let X and Y be ordered sets. Then U(X ) is a subalgebra of U(Y ) if
and only if there exists a surjective morphism ϕ : Y → X.

Recall that condition (2) of the splitting lemma is implied by:

(∀i ∈ ω)(∃B ∈ Vfsi) A � B and B 2 d i∆A = 0.

So now, with X = J (A)∂ , we seek another connected ordered set Y
for which there is no surjective morphism ϕ : Y → X .
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let ϕ : X → Y be a morphism.

1 For all x ∈ X, if x is minimal then ϕ(x) is minimal and if x is
maximal then ϕ(x) is maximal.

2 For all S ⊆ X, if (S,≤S) is connected then (ϕ(S),≤ϕ(S)) is
connected.

Proof of (1).
If x is maximal then ↑ϕ(x) = ϕ(↑x) = {ϕ(x)} and so ϕ(x) is maximal.
If x is minimal then min(X ) ∩ ↓x = {x}, and so

{ϕ(x)} = ϕ(min(X ) ∩ ↓x) = min(Y ) ∩ ↓ϕ(x),

and therefore ϕ(x) is minimal.
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Properties of morphisms

For each x ∈ S, let mx = S ∩ lx .
For each x ∈ S, let êϕ(x) = ϕ(S) ∩ lϕ(x).

Then (S,≤S) is connected if and only if for all x ∈ S there exists n ∈ ω
such that S = mnx . Similarly, (ϕ(S),≤ϕ(S)) is connected if and only if
for all x ∈ S, there exists n ∈ ω such that ϕ(S) = ênϕ(x).

Proof of (2).
Let x ∈ S. Since S is connected, there exists n ∈ ω such that S = mnx .
We will show that ϕ(S) = ênϕ(x).
Clearly, ênϕ(x) ⊆ ϕ(S). For the reverse inclusion, since ϕ is
order-preserving, if y ∈ mx then ϕ(y) ∈ lϕ(x) and ϕ(y) ∈ ϕ(S), and so
ϕ(y) ∈ êϕ(x). Hence ϕ(mx) ⊆ êϕ(x). It then follows inductively that
ϕ(S) = ϕ(mnx) ⊆ ênϕ(x), as required.
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Clearly, ênϕ(x) ⊆ ϕ(S). For the reverse inclusion, since ϕ is
order-preserving, if y ∈ mx then ϕ(y) ∈ lϕ(x) and ϕ(y) ∈ ϕ(S), and so
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Fences
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Fences

Definition
A finite ordered set X is a fence if there is an enumeration x1, . . . , xn of
elements of X such that the only order relations on X are given by one
of the following:

1 x1 < x2 > x3 < · · · > xn−1 < xn,
2 x1 < x2 > x3 < · · · < xn−1 > xn, or,
3 x1 > x2 < x3 > · · · > xn−1 < xn.

We will permit the two-element fence under this definition, which is
covered by all of (1), (2) and (3).

This is not the most user-friendly definition.
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Tails
Definition
Let X be an ordered set. We will say that a pair (τ1, τ2) ∈ X 2 is an
up-tail if τ1 is maximal and ↓τ1 = {τ1, τ2}.

Dually, it is a down-tail if τ1 is
minimal and ↑τ1 = {τ1, τ2}. In either case we will say that the pair
(τ1, τ2) is a tail and that X has a tail.

τ1 τ2

(a)

τ1 τ2

(b)

Figure: In (a), the pair (τ1, τ2) forms an up-tail and in (b), the pair (τ1, τ2)
forms a down-tail.
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Tails and fences

Lemma 1
Let X be an ordered set and let ϕ be a morphism on X. If (x , y) is a
down-tail in X then (ϕ(x), ϕ(y)) is a down-tail in ϕ(X ).

Proof.
(1) x is minimal so ϕ(x) is minimal. (2) ↑ϕ(x) = ϕ(↑x) = {ϕ(x), ϕ(y)}.

Lemma
Let X be a finite connected ordered set. The following are equivalent:

1 X is a fence.
2 X is has at least one tail, and (∀x ∈ X ) |↑x | ≤ 3 and |↓x | ≤ 3.
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Extra structure

A double-pointed ordered set is a tuple S = 〈S;α, β,≤〉 such that α
and β are nullary operations and ≤ is an order on S. We will add a
further assumption that α is minimal and β is maximal.

Definition
Let S and T be double-pointed ordered sets, and assume that
S ∩ T = ∅. Let S↘ T be the double-pointed ordered set defined by the
following:

1 Underlying set is S ∪ T
2 ≤S↘T = ≤S ∪ ≤T ∪ {(αT, βS)}
3 αS↘T = αS

4 βS↘T = βT

A double-pointed ordered set T is an ordered set with a down-tail if it
has a down-tail (τ1, τ2) and αT = τ1.
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S↘ T illustrated

αS αT αS↘T

βS βT βS↘T
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Important lemmas

Lemma 2
Let S and T be double-pointed ordered sets, assume S is connected,
and let ϕ be a morphism on S↘ T. If ϕ(βS) ∈ ϕ(T ), then
ϕ(S↘ T) = ϕ(T ).

Lemma 3
Let S be a double-pointed ordered set, let T be an ordered set with a
down-tail, and let ϕ be a morphism on S↘ T. If ϕ(βS) /∈ ϕ(T ) then τT

2
is the only element of T that maps to ϕ(τT

2 ).

Lemma 4
Let S be a connected ordered set, let F be a fence with a down-tail, and
let ϕ be a morphism on S↘ F. If ϕ(βS) /∈ ϕ(F ) then ϕ�F is one-to-one.
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Important lemmas

Lemma 5
Let S be a double-pointed ordered set, let F be a fence with a
down-tail, and let ϕ be a morphism on S↘ F. Then, for all x , y ∈ F:

1 If |F | > 2 and (x , y) is an up-tail in F then (ϕ(x), ϕ(y)) is an up-tail
in ϕ(S↘ F).

2 Both |ϕ(F ) ∩ ↓ϕ(x)| ≤ 3 and |ϕ(F ) ∩ ↑ϕ(x)| ≤ 3.
Consequently, (ϕ(F ),≤ϕ(F )) is a fence.

Corollary
Let S be a connected ordered set, let F be a fence with a down-tail,
and let ϕ be a morphism on S↘ F. If ϕ�F is not one-to-one, then
ϕ(S↘ F) is a fence.
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Almost there

Let X be a finite double-pointed ordered set.

For each i ∈ ω, let
Xi = X × {i}. Now let Xi be the double-pointed ordered set with
underlying set Xi , with the order defined by (x , i) ≤ (y , i) if and only if
x ≤ y , and let αXi = (α, i) and βXi = (β, i). Now, for each n ∈ ω, let

X(n) = Xn↘ Xn−1↘ . . .↘ X2↘ X1.

Note that αX(n)
= (α,n) and βX(n)

= (β,1).

Corollary
Let X be a finite double-pointed ordered set and let F be a fence with a
down-tail. If X is not a fence, and |F | > |X |, then for all n ∈ ω and every
morphism ϕ on X(n)↘ F, we have ϕ(X(n)↘ F) � X.

That is, U(X) � U(X(n) ↘ F), which is one part of the splitting lemma.
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The other half

Recall that the diagram of a finite H+ algebra A is the term

∆A =
∧
{[xa∧b ↔ (xa ∧ xb)] ∧ [xa∨b ↔ (xa ∨ xb)] ∧ [xa→b ↔ (xa → xb)]

∧ [x∼a ↔ ∼xa] ∧ [x0 ↔ 0] ∧ [x1 ↔ 1] | a,b ∈ A}

Lemma
Let X and Y be double-pointed ordered sets and let n ∈ ω. For each
U ∈ U(X), map the variable xU 7→

⋃
i≤n+1 U × {i}. Then, in

U(X(n+1) ↘ Y),
∆U(X)(x) =

⋃
i≤n+1

Xi .

Then, dn(∆U(X)(x)) 6= ∅.
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If it splits, then it must be a fence
What if X is a fence? Provided that |X | > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X | > 2. Then U(X ) is not splitting.

Proof.
If X is a fence without a down-tail, then repeat the previous slides and
choose F so that it has a down-tail and apply Lemma 1. Similarly, if X
has no up-tails then choose F so that it has an up-tail and apply
Lemma 5(1). We require a special argument for “N-like” fences.

Okay fine, but what if |X | = 2?

Theorem
It splits! (But it’s not easy to prove)
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In full generality

Theorem
Let V be a variety of H+ algebras that is closed under↘ and contains
all finite fences. Then an algebra A splits the lattice of subvarieties of V
if and only if it is the 2-element boolean algebra or the 3-element chain.

Further applications
All the arguments we have seen apply to double-Heyting algebras
and to congruence-regular double p-algebras.
Let H+

n (resp. DHn) denote the class of H+ algebras (resp.
double-Heyting algebras) whose dual space has height at most n.
Each of these forms a variety, and provided that n ≥ 1, contain all
finite fences, and are closed under↘.
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