Splittings in the variety of dually pseudocomplemented Heyting algebras

Christopher Taylor

GA Seminar, 4 May, 2017

H^+ algebras

A *dually pseudocomplemented Heyting algebra* is an algebra $\mathbf{A} = \langle \mathbf{A}; \lor, \land, \rightarrow, \sim, 0, 1 \rangle$ such that:

- $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and,
- ullet ~ is a dual pseudocomplement operation, i.e.,

$$x \lor y = 1 \iff y \ge \sim x.$$

H^+ algebras

A *dually pseudocomplemented Heyting algebra* is an algebra $\mathbf{A} = \langle \mathbf{A}; \lor, \land, \rightarrow, \sim, 0, 1 \rangle$ such that:

- $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and,
- ullet ~ is a dual pseudocomplement operation, i.e.,

$$x \lor y = 1 \iff y \ge \sim x.$$

For convenience we will abbreviate it to H^+ algebra. Let $\neg x = x \rightarrow 0$.

H^+ algebras

A *dually pseudocomplemented Heyting algebra* is an algebra $\mathbf{A} = \langle \mathbf{A}; \lor, \land, \rightarrow, \sim, 0, 1 \rangle$ such that:

- $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and,
- ullet ~ is a dual pseudocomplement operation, i.e.,

$$x \lor y = 1 \iff y \ge \sim x.$$

For convenience we will abbreviate it to H^+ algebra. Let $\neg x = x \rightarrow 0$.

Theorem

Congruences on a H⁺ algebra are determined by the term $dx := \neg \sim x$.

What the phrase "are determined by" means is a topic for another time.

Let \mathcal{H}^+ denote the variety of H^+ algebras. Recall that the *diagram* of a finite H^+ algebra **A** is the term

$$\Delta_{\mathbf{A}} = \bigwedge \{ [x_{a \wedge b} \leftrightarrow (x_a \wedge x_b)] \land [x_{a \vee b} \leftrightarrow (x_a \vee x_b)] \land [x_{a \to b} \leftrightarrow (x_a \to x_b)] \\ \land [x_{\sim a} \leftrightarrow \sim x_a] \land [x_0 \leftrightarrow 0] \land [x_1 \leftrightarrow 1] \mid a, b \in A \}$$

Let \mathcal{H}^+ denote the variety of H^+ algebras. Recall that the *diagram* of a finite H^+ algebra **A** is the term

$$\Delta_{\mathbf{A}} = \bigwedge \{ [x_{a \wedge b} \leftrightarrow (x_a \wedge x_b)] \land [x_{a \vee b} \leftrightarrow (x_a \vee x_b)] \land [x_{a \to b} \leftrightarrow (x_a \to x_b)] \\ \land [x_{\sim a} \leftrightarrow \sim x_a] \land [x_0 \leftrightarrow 0] \land [x_1 \leftrightarrow 1] \mid a, b \in A \}$$

Lemma

Let \mathcal{V} be a subvariety of \mathcal{H}^+ and let $\mathbf{A} \in \mathcal{V}_{fin}$ be subdirectly irreducible. The following are equivalent:

() A is not a splitting algebra in \mathcal{V} ,

2
$$(\forall i \in \omega)(\exists \mathbf{B} \in \mathcal{V}) \mathbf{A} \notin \mathcal{V}(\mathbf{B}) \text{ and } \mathbf{B} \nvDash d^i \Delta_{\mathbf{A}} = \mathbf{0}.$$

What if we can find a simple algebra B instead?

What if we can find a simple algebra B instead?

Fact

Let $\mathbf{A} \in \mathcal{H}_{\text{fin}}^+$. Then \mathbf{A} is simple if and only if \mathbf{A} is subdirectly irreducible.

What if we can find a simple algebra B instead?

Fact

Let $\textbf{A} \in \mathcal{H}_{\textit{fin}}^+.$ Then A is simple if and only if A is subdirectly irreducible.

Lemma

Let A, B be simple H^+ algebras. Then $A \in \mathcal{V}(B)$ if and only if $A \nleq B$.

What if we can find a simple algebra B instead?

Fact

Let $\textbf{A} \in \mathcal{H}_{\textit{fin}}^+.$ Then A is simple if and only if A is subdirectly irreducible.

Lemma

Let A, B be simple H^+ algebras. Then $A \in \mathcal{V}(B)$ if and only if $A \nleq B$.

Hence, condition (2) of the splitting lemma is implied by:

$$(\forall i \in \omega)(\exists \mathbf{B} \in \mathcal{V}_{\mathsf{fsi}}) \mathbf{A} \nleq \mathbf{B} \text{ and } \mathbf{B} \nvDash d^i \Delta_{\mathbf{A}} = \mathbf{0}.$$

 Let H⁺_{fin} be the category whose objects are finite double-Heyting algebras and whose morphisms are H⁺ homomorphisms.

- Let **H**⁺_{fin} be the category whose objects are finite double-Heyting algebras and whose morphisms are *H*⁺ homomorphisms.
- Let O_{fin} be the category whose objects are finite ordered sets and whose morphisms are order-preserving maps φ: X → Y satisfying the following for all x ∈ X:
 - $\varphi(\uparrow x) = \uparrow \varphi(x)$, and,
 - $\varphi(\min(X) \cap \downarrow x) = \min(Y) \cap \downarrow \varphi(x).$

- Let **H**⁺_{fin} be the category whose objects are finite double-Heyting algebras and whose morphisms are *H*⁺ homomorphisms.
- Let O_{fin} be the category whose objects are finite ordered sets and whose morphisms are order-preserving maps φ: X → Y satisfying the following for all x ∈ X:
 - $\varphi(\uparrow x) = \uparrow \varphi(x)$, and,
 - $\varphi(\min(X) \cap \downarrow x) = \min(Y) \cap \downarrow \varphi(x).$

Fact

 H_{fin}^+ and O_{fin} are dually equivalent categories.

- Let **H**⁺_{fin} be the category whose objects are finite double-Heyting algebras and whose morphisms are *H*⁺ homomorphisms.
- Let O_{fin} be the category whose objects are finite ordered sets and whose morphisms are order-preserving maps φ: X → Y satisfying the following for all x ∈ X:
 - $\varphi(\uparrow x) = \uparrow \varphi(x)$, and,
 - $\varphi(\min(X) \cap \downarrow x) = \min(Y) \cap \downarrow \varphi(x).$

Fact

 H_{fin}^+ and O_{fin} are dually equivalent categories.

An ordered set X produces the algebra $\langle \mathcal{U}(X), \cup, \cap, \rightarrow, \sim, \varnothing, X \rangle$, where:

- $U \rightarrow V = X \setminus \downarrow (U \setminus V)$,
- $\sim U = \uparrow (X \setminus U)$, and,
- $d^n U = X \setminus (\downarrow \uparrow)^n (X \setminus U).$

A finite ordered set *X* is *connected* if for every $x \in X$ there exists $n \in \omega$ such that $\uparrow^n x = X$, where $\uparrow x = \uparrow x \cup \downarrow x$.

A finite ordered set *X* is *connected* if for every $x \in X$ there exists $n \in \omega$ such that $\uparrow^n x = X$, where $\uparrow x = \uparrow x \cup \downarrow x$.

Fact

A finite H^+ algebra **A** is simple if and only if $\mathcal{J}(\mathbf{A})$ is connected.

A finite ordered set *X* is *connected* if for every $x \in X$ there exists $n \in \omega$ such that $\uparrow^n x = X$, where $\uparrow x = \uparrow x \cup \downarrow x$.

Fact

A finite H^+ algebra **A** is simple if and only if $\mathcal{J}(\mathbf{A})$ is connected.

Fact

Let X and Y be ordered sets. Then $\mathcal{U}(X)$ is a subalgebra of $\mathcal{U}(Y)$ if and only if there exists a surjective morphism $\varphi \colon Y \to X$.

A finite ordered set *X* is *connected* if for every $x \in X$ there exists $n \in \omega$ such that $\uparrow^n x = X$, where $\uparrow x = \uparrow x \cup \downarrow x$.

Fact

A finite H^+ algebra **A** is simple if and only if $\mathcal{J}(\mathbf{A})$ is connected.

Fact

Let X and Y be ordered sets. Then $\mathcal{U}(X)$ is a subalgebra of $\mathcal{U}(Y)$ if and only if there exists a surjective morphism $\varphi \colon Y \to X$.

Recall that condition (2) of the splitting lemma is implied by:

$$(\forall i \in \omega)(\exists \mathbf{B} \in \mathcal{V}_{\mathsf{fsi}}) \mathbf{A} \nleq \mathbf{B} \text{ and } \mathbf{B} \nvDash d^i \Delta_{\mathbf{A}} = \mathbf{0}.$$

A finite ordered set *X* is *connected* if for every $x \in X$ there exists $n \in \omega$ such that $\uparrow^n x = X$, where $\uparrow x = \uparrow x \cup \downarrow x$.

Fact

A finite H^+ algebra **A** is simple if and only if $\mathcal{J}(\mathbf{A})$ is connected.

Fact

Let X and Y be ordered sets. Then $\mathcal{U}(X)$ is a subalgebra of $\mathcal{U}(Y)$ if and only if there exists a surjective morphism $\varphi \colon Y \to X$.

Recall that condition (2) of the splitting lemma is implied by:

$$(\forall i \in \omega)(\exists \mathbf{B} \in \mathcal{V}_{fsi}) \mathbf{A} \nleq \mathbf{B} \text{ and } \mathbf{B} \nvDash d^i \Delta_{\mathbf{A}} = \mathbf{0}.$$

So now, with $X = \mathcal{J}(\mathbf{A})^{\partial}$, we seek another connected ordered set Y for which there is no surjective morphism $\varphi \colon Y \to X$.

Lemma

Let X and Y be ordered sets and let $\varphi \colon X \to Y$ be a morphism.

- For all $x \in X$, if x is minimal then $\varphi(x)$ is minimal and if x is maximal then $\varphi(x)$ is maximal.
- Por all S ⊆ X, if (S, ≤_S) is connected then (φ(S), ≤_{φ(S)}) is connected.

Lemma

Let X and Y be ordered sets and let $\varphi \colon X \to Y$ be a morphism.

- For all $x \in X$, if x is minimal then $\varphi(x)$ is minimal and if x is maximal then $\varphi(x)$ is maximal.
- Por all S ⊆ X, if (S, ≤_S) is connected then (φ(S), ≤_{φ(S)}) is connected.

Proof of (1).

If *x* is maximal then $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x)\}$

Lemma

Let X and Y be ordered sets and let $\varphi \colon X \to Y$ be a morphism.

- For all $x \in X$, if x is minimal then $\varphi(x)$ is minimal and if x is maximal then $\varphi(x)$ is maximal.
- Por all S ⊆ X, if (S, ≤_S) is connected then (φ(S), ≤_{φ(S)}) is connected.

Proof of (1).

If x is maximal then $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x)\}$ and so $\varphi(x)$ is maximal.

Lemma

Let X and Y be ordered sets and let $\varphi \colon X \to Y$ be a morphism.

- For all $x \in X$, if x is minimal then $\varphi(x)$ is minimal and if x is maximal then $\varphi(x)$ is maximal.
- Por all S ⊆ X, if (S, ≤_S) is connected then (φ(S), ≤_{φ(S)}) is connected.

Proof of (1).

If x is maximal then $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x)\}$ and so $\varphi(x)$ is maximal. If x is minimal then $\min(X) \cap \downarrow x = \{x\}$,

Lemma

Let X and Y be ordered sets and let $\varphi \colon X \to Y$ be a morphism.

- For all $x \in X$, if x is minimal then $\varphi(x)$ is minimal and if x is maximal then $\varphi(x)$ is maximal.
- Por all S ⊆ X, if (S, ≤_S) is connected then (φ(S), ≤_{φ(S)}) is connected.

Proof of (1).

If x is maximal then $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x)\}$ and so $\varphi(x)$ is maximal. If x is minimal then $\min(X) \cap \downarrow x = \{x\}$, and so

$$\{\varphi(x)\} = \varphi(\min(X) \cap \downarrow x) = \min(Y) \cap \downarrow \varphi(x),$$

Lemma

Let X and Y be ordered sets and let $\varphi \colon X \to Y$ be a morphism.

- For all $x \in X$, if x is minimal then $\varphi(x)$ is minimal and if x is maximal then $\varphi(x)$ is maximal.
- Por all S ⊆ X, if (S, ≤_S) is connected then (φ(S), ≤_{φ(S)}) is connected.

Proof of (1).

If x is maximal then $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x)\}$ and so $\varphi(x)$ is maximal. If x is minimal then $\min(X) \cap \downarrow x = \{x\}$, and so

$$\{\varphi(x)\} = \varphi(\min(X) \cap \downarrow x) = \min(Y) \cap \downarrow \varphi(x),$$

and therefore $\varphi(x)$ is minimal.

- For each $x \in S$, let $\ x = S \cap x$.
- For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

• For each $x \in S$, let $\ x = S \cap x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \prod^n x$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi (x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = {}^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = {}^n \varphi(x)$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi (x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{there}^n x$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{there}^n x$. We will show that $\varphi(S) = \text{there}^n \varphi(x)$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{there}^n x$. We will show that $\varphi(S) = \text{there}^n \varphi(x)$. Clearly, $\text{there}^n \varphi(x) \subseteq \varphi(S)$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{theta}^n x$. We will show that $\varphi(S) = \text{theta}^n \varphi(x)$. Clearly, $\text{theta}^n \varphi(x) \subseteq \varphi(S)$. For the reverse inclusion, since φ is order-preserving, if $y \in \text{theta} x$ then $\varphi(y) \in \text{theta}(x)$ and $\varphi(y) \in \varphi(S)$,

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{th}^n x$. We will show that $\varphi(S) = \text{th}^n \varphi(x)$. Clearly, $\text{th}^n \varphi(x) \subseteq \varphi(S)$. For the reverse inclusion, since φ is order-preserving, if $y \in \text{th}x$ then $\varphi(y) \in \text{th}\varphi(x)$ and $\varphi(y) \in \varphi(S)$, and so $\varphi(y) \in \text{th}\varphi(x)$.

• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{th}^n x$. We will show that $\varphi(S) = \text{th}^n \varphi(x)$. Clearly, $\text{th}^n \varphi(x) \subseteq \varphi(S)$. For the reverse inclusion, since φ is order-preserving, if $y \in \text{th} x$ then $\varphi(y) \in \text{th} \varphi(x)$ and $\varphi(y) \in \varphi(S)$, and so $\varphi(y) \in \text{th} \varphi(x)$. Hence $\varphi(\text{th} x) \subseteq \text{th} \varphi(x)$.

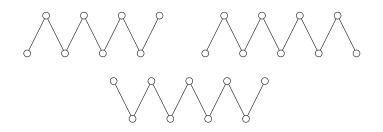
• For each $x \in S$, let $\ x = S \cap \ x$.

• For each $x \in S$, let $\psi \varphi(x) = \varphi(S) \cap \varphi(x)$.

Then (S, \leq_S) is connected if and only if for all $x \in S$ there exists $n \in \omega$ such that $S = \uparrow n^n x$. Similarly, $(\varphi(S), \leq_{\varphi(S)})$ is connected if and only if for all $x \in S$, there exists $n \in \omega$ such that $\varphi(S) = \uparrow n^n \varphi(x)$.

Proof of (2).

Let $x \in S$. Since *S* is connected, there exists $n \in \omega$ such that $S = \text{th}^n x$. We will show that $\varphi(S) = \text{th}^n \varphi(x)$. Clearly, $\text{th}^n \varphi(x) \subseteq \varphi(S)$. For the reverse inclusion, since φ is order-preserving, if $y \in \text{th}x$ then $\varphi(y) \in \text{th}\varphi(x)$ and $\varphi(y) \in \varphi(S)$, and so $\varphi(y) \in \text{th}\varphi(x)$. Hence $\varphi(\text{th}x) \subseteq \text{th}\varphi(x)$. It then follows inductively that $\varphi(S) = \varphi(\text{th}^n x) \subseteq \text{th}^n \varphi(x)$, as required. Fences



Fences

Definition

A finite ordered set X is a *fence* if there is an enumeration x_1, \ldots, x_n of elements of X such that the only order relations on X are given by one of the following:

2
$$x_1 < x_2 > x_3 < \cdots < x_{n-1} > x_n$$
, or,

We will permit the two-element fence under this definition, which is covered by all of (1), (2) and (3).

Fences

Definition

A finite ordered set X is a *fence* if there is an enumeration x_1, \ldots, x_n of elements of X such that the only order relations on X are given by one of the following:

2
$$x_1 < x_2 > x_3 < \cdots < x_{n-1} > x_n$$
, or,

We will permit the two-element fence under this definition, which is covered by all of (1), (2) and (3).

This is not the most user-friendly definition.

Tails

Definition

Let *X* be an ordered set. We will say that a pair $(\tau_1, \tau_2) \in X^2$ is an *up-tail* if τ_1 is maximal and $\downarrow \tau_1 = \{\tau_1, \tau_2\}$.

Tails

Definition

Let *X* be an ordered set. We will say that a pair $(\tau_1, \tau_2) \in X^2$ is an *up-tail* if τ_1 is maximal and $\downarrow \tau_1 = \{\tau_1, \tau_2\}$. Dually, it is a *down-tail* if τ_1 is minimal and $\uparrow \tau_1 = \{\tau_1, \tau_2\}$. In either case we will say that the pair (τ_1, τ_2) is a *tail* and that *X* has a *tail*.

Tails

Definition

Let *X* be an ordered set. We will say that a pair $(\tau_1, \tau_2) \in X^2$ is an *up-tail* if τ_1 is maximal and $\downarrow \tau_1 = \{\tau_1, \tau_2\}$. Dually, it is a *down-tail* if τ_1 is minimal and $\uparrow \tau_1 = \{\tau_1, \tau_2\}$. In either case we will say that the pair (τ_1, τ_2) is a *tail* and that *X* has a *tail*.

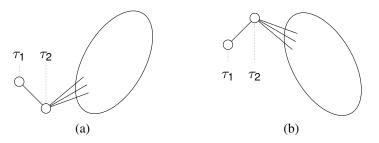


Figure: In (a), the pair (τ_1, τ_2) forms an up-tail and in (b), the pair (τ_1, τ_2) forms a down-tail.

hris	

Tails and fences

Lemma 1

Let X be an ordered set and let φ be a morphism on X. If (x, y) is a down-tail in X then $(\varphi(x), \varphi(y))$ is a down-tail in $\varphi(X)$.

Tails and fences

Lemma 1

Let X be an ordered set and let φ be a morphism on X. If (x, y) is a down-tail in X then $(\varphi(x), \varphi(y))$ is a down-tail in $\varphi(X)$.

Proof.

(1) *x* is minimal so $\varphi(x)$ is minimal. (2) $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x), \varphi(y)\}.$

Tails and fences

Lemma 1

Let X be an ordered set and let φ be a morphism on X. If (x, y) is a down-tail in X then $(\varphi(x), \varphi(y))$ is a down-tail in $\varphi(X)$.

Proof.

(1) *x* is minimal so $\varphi(x)$ is minimal. (2) $\uparrow \varphi(x) = \varphi(\uparrow x) = \{\varphi(x), \varphi(y)\}.$

Lemma

Let X be a finite connected ordered set. The following are equivalent:

- X is a fence.
- 2 *X* is has at least one tail, and $(\forall x \in X) |\uparrow x| \le 3$ and $|\downarrow x| \le 3$.

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

Definition

Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$.

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

Definition

Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$. Let **S** \searrow **T** be the double-pointed ordered set defined by the following:

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

Definition

Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$. Let **S** \searrow **T** be the double-pointed ordered set defined by the following:

1 Underlying set is $S \cup T$

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

Definition

Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$. Let **S** \searrow **T** be the double-pointed ordered set defined by the following:

• Underlying set is $S \cup T$

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

Definition

Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$. Let **S** \searrow **T** be the double-pointed ordered set defined by the following:

• Underlying set is $S \cup T$

$$a^{\mathbf{S} \searrow \mathbf{T}} = \alpha^{\mathbf{S}}$$

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

Definition

Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$. Let **S** \searrow **T** be the double-pointed ordered set defined by the following:

• Underlying set is $S \cup T$

$$2 \leq^{S \searrow T} = \leq^{S} \cup \leq^{T} \cup \{ (\alpha^{\mathsf{T}}, \beta^{\mathsf{S}}) \}$$

$$a \mathbf{S} \mathbf{X}^{\mathsf{T}} = \alpha^{\mathsf{S}}$$

A *double-pointed ordered set* is a tuple $\mathbf{S} = \langle \mathbf{S}; \alpha, \beta, \leq \rangle$ such that α and β are nullary operations and \leq is an order on \mathbf{S} . We will add a further assumption that α is minimal and β is maximal.

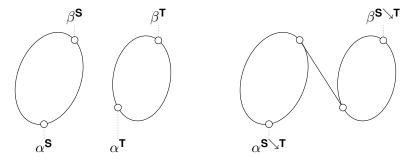
Definition

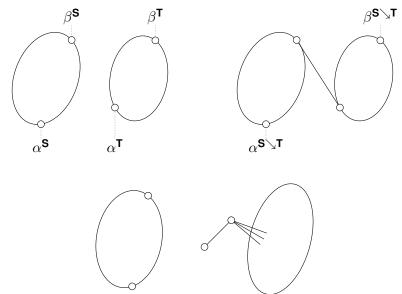
Let **S** and **T** be double-pointed ordered sets, and assume that $S \cap T = \emptyset$. Let **S** \searrow **T** be the double-pointed ordered set defined by the following:

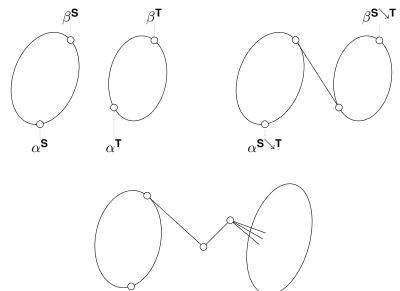
• Underlying set is $S \cup T$

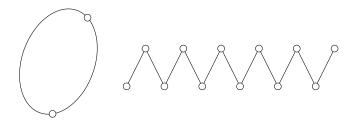
$$a^{\mathbf{S} \searrow \mathbf{T}} = \alpha^{\mathbf{S}}$$

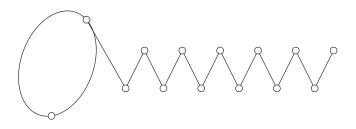
A double-pointed ordered set **T** is an *ordered set with a down-tail* if it has a down-tail (τ_1, τ_2) and $\alpha^{T} = \tau_1$.

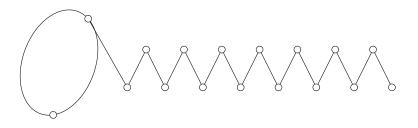


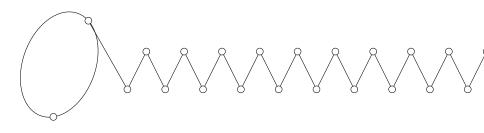












Lemma 2

Let **S** and **T** be double-pointed ordered sets, assume **S** is connected, and let φ be a morphism on **S** \searrow **T**. If $\varphi(\beta^{\mathbf{S}}) \in \varphi(T)$, then $\varphi(\mathbf{S} \searrow \mathbf{T}) = \varphi(T)$.

Lemma 2

Let **S** and **T** be double-pointed ordered sets, assume **S** is connected, and let φ be a morphism on **S** \searrow **T**. If $\varphi(\beta^{\mathbf{S}}) \in \varphi(T)$, then $\varphi(\mathbf{S} \searrow \mathbf{T}) = \varphi(T)$.

Lemma 3

Let **S** be a double-pointed ordered set, let **T** be an ordered set with a down-tail, and let φ be a morphism on **S** \searrow **T**. If $\varphi(\beta^{S}) \notin \varphi(T)$ then τ_{2}^{T} is the only element of T that maps to $\varphi(\tau_{2}^{T})$.

Lemma 2

Let **S** and **T** be double-pointed ordered sets, assume **S** is connected, and let φ be a morphism on **S** \searrow **T**. If $\varphi(\beta^{\mathbf{S}}) \in \varphi(T)$, then $\varphi(\mathbf{S} \searrow \mathbf{T}) = \varphi(T)$.

Lemma 3

Let **S** be a double-pointed ordered set, let **T** be an ordered set with a down-tail, and let φ be a morphism on **S** \searrow **T**. If $\varphi(\beta^{S}) \notin \varphi(T)$ then τ_{2}^{T} is the only element of T that maps to $\varphi(\tau_{2}^{T})$.

Lemma 4

Let **S** be a connected ordered set, let **F** be a fence with a down-tail, and let φ be a morphism on **S** \searrow **F**. If $\varphi(\beta^{\mathbf{S}}) \notin \varphi(F)$ then $\varphi \upharpoonright_F$ is one-to-one.

Lemma 5

Let **S** be a double-pointed ordered set, let **F** be a fence with a down-tail, and let φ be a morphism on **S** \searrow **F**. Then, for all $x, y \in F$:

- If |F| > 2 and (x, y) is an up-tail in **F** then $(\varphi(x), \varphi(y))$ is an up-tail in $\varphi(\mathbf{S} \searrow \mathbf{F})$.
- **2** Both $|\varphi(F) \cap \downarrow \varphi(x)| \leq 3$ and $|\varphi(F) \cap \uparrow \varphi(x)| \leq 3$.

Consequently, $(\varphi(F), \leq_{\varphi(F)})$ is a fence.

Lemma 5

Let **S** be a double-pointed ordered set, let **F** be a fence with a down-tail, and let φ be a morphism on **S** \searrow **F**. Then, for all $x, y \in F$:

- If |F| > 2 and (x, y) is an up-tail in **F** then $(\varphi(x), \varphi(y))$ is an up-tail in $\varphi(\mathbf{S} \searrow \mathbf{F})$.
- **2** Both $|\varphi(F) \cap \downarrow \varphi(x)| \leq 3$ and $|\varphi(F) \cap \uparrow \varphi(x)| \leq 3$.

Consequently, $(\varphi(F), \leq_{\varphi(F)})$ is a fence.

Corollary

Let **S** be a connected ordered set, let **F** be a fence with a down-tail, and let φ be a morphism on **S** \searrow **F**. If $\varphi \upharpoonright_F$ is not one-to-one, then $\varphi(\mathbf{S} \searrow \mathbf{F})$ is a fence.

Let **X** be a finite double-pointed ordered set.

Let **X** be a finite double-pointed ordered set. For each $i \in \omega$, let $X_i = X \times \{i\}$.

Let **X** be a finite double-pointed ordered set. For each $i \in \omega$, let $X_i = X \times \{i\}$. Now let **X**_{*i*} be the double-pointed ordered set with underlying set X_i , with the order defined by $(x, i) \leq (y, i)$ if and only if $x \leq y$,

Let **X** be a finite double-pointed ordered set. For each $i \in \omega$, let $X_i = X \times \{i\}$. Now let **X**_{*i*} be the double-pointed ordered set with underlying set X_i , with the order defined by $(x, i) \leq (y, i)$ if and only if $x \leq y$, and let $\alpha^{\mathbf{X}_i} = (\alpha, i)$ and $\beta^{\mathbf{X}_i} = (\beta, i)$.

Let **X** be a finite double-pointed ordered set. For each $i \in \omega$, let $X_i = X \times \{i\}$. Now let **X**_i be the double-pointed ordered set with underlying set X_i , with the order defined by $(x, i) \leq (y, i)$ if and only if $x \leq y$, and let $\alpha^{\mathbf{X}_i} = (\alpha, i)$ and $\beta^{\mathbf{X}_i} = (\beta, i)$. Now, for each $n \in \omega$, let

$$\mathbf{X}^{(n)} = \mathbf{X}_n \searrow \mathbf{X}_{n-1} \searrow \ldots \searrow \mathbf{X}_2 \searrow \mathbf{X}_1.$$

Note that $\alpha^{\mathbf{X}^{(n)}} = (\alpha, n)$ and $\beta^{\mathbf{X}^{(n)}} = (\beta, 1)$.

Let **X** be a finite double-pointed ordered set. For each $i \in \omega$, let $X_i = X \times \{i\}$. Now let **X**_i be the double-pointed ordered set with underlying set X_i , with the order defined by $(x, i) \leq (y, i)$ if and only if $x \leq y$, and let $\alpha^{\mathbf{X}_i} = (\alpha, i)$ and $\beta^{\mathbf{X}_i} = (\beta, i)$. Now, for each $n \in \omega$, let

$$\mathbf{X}^{(n)} = \mathbf{X}_n \searrow \mathbf{X}_{n-1} \searrow \ldots \searrow \mathbf{X}_2 \searrow \mathbf{X}_1.$$

Note that
$$\alpha^{\mathbf{X}^{(n)}} = (\alpha, n)$$
 and $\beta^{\mathbf{X}^{(n)}} = (\beta, 1)$.

Corollary

Let **X** be a finite double-pointed ordered set and let **F** be a fence with a down-tail. If **X** is not a fence, and |F| > |X|, then for all $n \in \omega$ and every morphism φ on **X**⁽ⁿ⁾ \searrow **F**, we have φ (**X**⁽ⁿ⁾ \searrow **F**) \ncong *X*.

Let **X** be a finite double-pointed ordered set. For each $i \in \omega$, let $X_i = X \times \{i\}$. Now let **X**_i be the double-pointed ordered set with underlying set X_i , with the order defined by $(x, i) \leq (y, i)$ if and only if $x \leq y$, and let $\alpha^{\mathbf{X}_i} = (\alpha, i)$ and $\beta^{\mathbf{X}_i} = (\beta, i)$. Now, for each $n \in \omega$, let

$$\mathbf{X}^{(n)} = \mathbf{X}_n \searrow \mathbf{X}_{n-1} \searrow \ldots \searrow \mathbf{X}_2 \searrow \mathbf{X}_1.$$

Note that
$$\alpha^{\mathbf{X}^{(n)}} = (\alpha, n)$$
 and $\beta^{\mathbf{X}^{(n)}} = (\beta, 1)$.

Corollary

Let **X** be a finite double-pointed ordered set and let **F** be a fence with a down-tail. If **X** is not a fence, and |F| > |X|, then for all $n \in \omega$ and every morphism φ on $\mathbf{X}^{(n)} \searrow \mathbf{F}$, we have $\varphi(\mathbf{X}^{(n)} \searrow \mathbf{F}) \ncong X$.

That is, $\mathcal{U}(\mathbf{X}) \leq \mathcal{U}(\mathbf{X}^{(n)} \searrow \mathbf{F})$, which is one part of the splitting lemma.

The other half

Recall that the *diagram* of a finite H^+ algebra **A** is the term

$$\Delta_{\mathbf{A}} = \bigwedge \{ [x_{a \wedge b} \leftrightarrow (x_a \wedge x_b)] \land [x_{a \vee b} \leftrightarrow (x_a \vee x_b)] \land [x_{a \to b} \leftrightarrow (x_a \to x_b)] \land [x_{\sim a} \leftrightarrow \sim x_a] \land [x_0 \leftrightarrow 0] \land [x_1 \leftrightarrow 1] \mid a, b \in A \}$$

The other half

Recall that the *diagram* of a finite H^+ algebra **A** is the term

$$\Delta_{\mathbf{A}} = \bigwedge \{ [x_{a \wedge b} \leftrightarrow (x_a \wedge x_b)] \land [x_{a \vee b} \leftrightarrow (x_a \vee x_b)] \land [x_{a \to b} \leftrightarrow (x_a \to x_b)] \land [x_{\sim a} \leftrightarrow \sim x_a] \land [x_0 \leftrightarrow 0] \land [x_1 \leftrightarrow 1] \mid a, b \in A \}$$

Lemma

Let **X** and **Y** be double-pointed ordered sets and let $n \in \omega$. For each $U \in \mathcal{U}(\mathbf{X})$, map the variable $x_U \mapsto \bigcup_{i \leq n+1} U \times \{i\}$. Then, in $\mathcal{U}(\mathbf{X}^{(n+1)} \searrow \mathbf{Y})$,

$$\Delta_{\mathcal{U}(\mathbf{X})}(\overline{x}) = \bigcup_{i \le n+1} X_i.$$

Then, $d^n(\Delta_{\mathcal{U}(\mathbf{X})}(\overline{\mathbf{X}})) \neq \emptyset$.

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

Lemma

Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

Lemma

Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and choose F so that it has a down-tail and apply Lemma 1.

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

Lemma

Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and choose F so that it has a down-tail and apply Lemma 1. Similarly, if X has no up-tails then choose F so that it has an up-tail and apply Lemma 5(1).

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

Lemma

Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and choose F so that it has a down-tail and apply Lemma 1. Similarly, if X has no up-tails then choose F so that it has an up-tail and apply Lemma 5(1). We require a special argument for "N-like" fences.

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

Lemma

Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and choose F so that it has a down-tail and apply Lemma 1. Similarly, if X has no up-tails then choose F so that it has an up-tail and apply Lemma 5(1). We require a special argument for "N-like" fences.

Okay fine, but what if |X| = 2?

What if X is a fence? Provided that |X| > 2, we can choose a different ordered set.

Lemma

Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and choose F so that it has a down-tail and apply Lemma 1. Similarly, if X has no up-tails then choose F so that it has an up-tail and apply Lemma 5(1). We require a special argument for "N-like" fences.

Okay fine, but what if |X| = 2?

Theorem

It splits! (But it's not easy to prove)

In full generality

Theorem

Let \mathcal{V} be a variety of \mathcal{H}^+ algebras that is closed under \searrow and contains all finite fences. Then an algebra **A** splits the lattice of subvarieties of \mathcal{V} if and only if it is the 2-element boolean algebra or the 3-element chain.

In full generality

Theorem

Let \mathcal{V} be a variety of \mathcal{H}^+ algebras that is closed under \searrow and contains all finite fences. Then an algebra **A** splits the lattice of subvarieties of \mathcal{V} if and only if it is the 2-element boolean algebra or the 3-element chain.

Further applications

- All the arguments we have seen apply to double-Heyting algebras and to congruence-regular double p-algebras.
- Let H⁺_n (resp. DH_n) denote the class of H⁺ algebras (resp. double-Heyting algebras) whose dual space has height at most *n*. Each of these forms a variety, and provided that n ≥ 1, contain all finite fences, and are closed under √.