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H* algebras

A dually pseudocomplemented Heyting algebra is an algebra
A= (A V,\,—,~,0,1) such that:

@ (A;V,A,—,0,1) is a Heyting algebra, and,

@ ~ is a dual pseudocomplement operation, i.e.,

XVy=1 <= y>~x.
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H* algebras

A dually pseudocomplemented Heyting algebra is an algebra
A= (A V,\,—,~,0,1) such that:

@ (A;V,A,—,0,1) is a Heyting algebra, and,
@ ~ is a dual pseudocomplement operation, i.e.,

XVy=1 <= y>~x.

For convenience we will abbreviate it to H algebra. Let -x = x — 0.

Theorem
Congruences on a H™ algebra are determined by the term dx := wvx.J

What the phrase “are determined by” means is a topic for another time.
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The splitting lemma

Let H* denote the variety of H algebras. Recall that the diagram of a
finite H algebra A is the term

Ap = N{[Xarb <> (Xa A X)] A [Xavb <+ (Xa V Xb)] A [Xamsb <> (Xa = Xp)]

A [Xea > ~Xa) A [Xo <> O] A [x1 <> 1] | @, b € A}
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The splitting lemma

Let H* denote the variety of H algebras. Recall that the diagram of a
finite HT algebra A is the term

Ap = N{[Xarb <> (Xa A X)] A [Xavb <+ (Xa V Xb)] A [Xamsb <> (Xa = Xp)]

A [Xea > ~Xa) A [Xo <> O] A [x1 <> 1] | @, b € A}

Lemma

LetV be a subvariety of H™ and let A € Vy;, be subdirectly irreducible.
The following are equivalent:

@ A is not a splitting algebra in V,
Q (Vicw)(FBcV)A¢V(B)andB¥ d'Ap = 0.
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The splitting lemma

What if we can find a simple algebra B instead?
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The splitting lemma

What if we can find a simple algebra B instead?
Fact

LetA € Hﬁn. Then A is simple if and only if A is subdirectly irreducible.J
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The splitting lemma

What if we can find a simple algebra B instead?
Fact
LetA € Hﬁn. Then A is simple if and only if A is subdirectly irreducible.

Lemma
Let A, B be simple H* algebras. Then A € V(B) if and only if A &« B.
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The splitting lemma

What if we can find a simple algebra B instead?

Fact
LetA € Hﬁn. Then A is simple if and only if A is subdirectly irreducible.
Lemma

Let A, B be simple H* algebras. Then A € V(B) if and only if A &« B.

Hence, condition (2) of the splitting lemma is implied by:

(VI S w)(EIB S sti) A f B and B ¥ diAA =0.
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Duality for finite #™ algebras

@ Let H;iLn be the category whose objects are finite double-Heyting

algebras and whose morphisms are H™ homomorphisms.
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Duality for finite #™ algebras

o Let H;iLn be the category whose objects are finite double-Heyting
algebras and whose morphisms are H™ homomorphisms.

@ Let Oy, be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ¢: X — Y

satisfying the following for all x € X:

> o(1x) = Tp(x), and,
> o(min(X) Nlx) =min(Y) N Je(x).
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Duality for finite #™ algebras

o Let H;iLn be the category whose objects are finite double-Heyting
algebras and whose morphisms are H™ homomorphisms.

@ Let Oy, be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ¢: X — Y

satisfying the following for all x € X:
> ¢(Tx) = te(x), and,
> p(min(X) Nlx) =min(Y) N lo(x).
Fact J

H;,fn and Oy, are dually equivalent categories.
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Duality for finite #™ algebras
o Let H;iLn be the category whose objects are finite double-Heyting

algebras and whose morphisms are H™ homomorphisms.

@ Let Oy, be the category whose objects are finite ordered sets and
whose morphisms are order-preserving maps ¢: X — Y
satisfying the following for all x € X:

> o(1x) = Tp(x), and,
> o(min(X) Nlx) =min(Y) N Je(x).

Fact J

H;,.’n and Oy, are dually equivalent categories.

An ordered set X produces the algebra (U(X),U,N, =, ~, &, X),
where:

o U— V=X\[(U\V),

@ ~U=1(X\U), and,

® d"U = X\(11)"(X\U).
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Duality for finite #™ algebras

A finite ordered set X is connected if for every x € X there exists n € w
such that 1"x = X, where {x = tx U [ x.
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Duality for finite #™ algebras

A finite ordered set X is connected if for every x € X there exists n € w
such that 1"x = X, where {x = tx U [ x.

Fact
A finite H algebra A is simple if and only if 7(A) is connected. J
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Duality for finite #™ algebras

A finite ordered set X is connected if for every x € X there exists n € w
such that 1"x = X, where {x = tx U [ x.

Fact
A finite H algebra A is simple if and only if 7(A) is connected.

Fact

Let X and Y be ordered sets. ThenU(X) is a subalgebra of U(Y) if
and only if there exists a surjective morphism ¢: Y — X.
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Duality for finite #™ algebras

A finite ordered set X is connected if for every x € X there exists n € w
such that 1"x = X, where {x = tx U [ x.

Fact
A finite H algebra A is simple if and only if 7(A) is connected.

Fact

Let X and Y be ordered sets. ThenU(X) is a subalgebra of U(Y) if
and only if there exists a surjective morphism ¢: Y — X.

Recall that condition (2) of the splitting lemma is implied by:
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Duality for finite #™ algebras

A finite ordered set X is connected if for every x € X there exists n € w
such that 1"x = X, where {x = tx U [ x.

Fact
A finite H algebra A is simple if and only if 7(A) is connected.

Fact

Let X and Y be ordered sets. ThenU(X) is a subalgebra of U(Y) if
and only if there exists a surjective morphism ¢: Y — X.

Recall that condition (2) of the splitting lemma is implied by:
(Vie w)(3B € Vi) A£ Band B¥ d'Ap =0.
So now, with X = 7(A)?, we seek another connected ordered set Y

for which there is no surjective morphism ¢: Y — X.
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let p: X — Y be a morphism.
@ Forall x € X, if x is minimal then ©(x) is minimal and if x is
maximal then ¢(x) is maximal.
@ Forall S C X, if (S, <s) is connected then (¢(S), <,s)) s
connected.
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let p: X — Y be a morphism.

@ Forall x € X, if x is minimal then ©(x) is minimal and if x is
maximal then ¢(x) is maximal.

@ Forall S C X, if (S, <s) is connected then (¢(S), <,s)) s
connected.

Proof of (1).
If x is maximal then To(x) = p(1x) = {p(x)}
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let p: X — Y be a morphism.

@ Forall x € X, if x is minimal then ©(x) is minimal and if x is
maximal then ¢(x) is maximal.

@ Forall S C X, if (S, <s) is connected then (¢(S), <,s)) s
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let p: X — Y be a morphism.

@ Forall x € X, if x is minimal then ©(x) is minimal and if x is
maximal then ¢(x) is maximal.

@ Forall S C X, if (S, <s) is connected then (¢(S), <,s)) s
connected.

Proof of (1).

If x is maximal then To(x) = p(1x) = {¢(x)} and so ¢(x) is maximal.
If x is minimal then min(X) N |x = {x},
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let p: X — Y be a morphism.

@ Forall x € X, if x is minimal then ©(x) is minimal and if x is
maximal then ¢(x) is maximal.

@ Forall S C X, if (S, <s) is connected then (¢(S), <,s)) s
connected.

Proof of (1).

If x is maximal then To(x) = p(1x) = {¢(x)} and so ¢(x) is maximal.
If x is minimal then min(X) N |x = {x}, and so

{e(x)} = (min(X) N x) = min(Y) N Lo(x),
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Properties of morphisms

Lemma
Let X and Y be ordered sets and let p: X — Y be a morphism.

@ Forall x € X, if x is minimal then ©(x) is minimal and if x is
maximal then ¢(x) is maximal.

@ Forall S C X, if (S, <s) is connected then (¢(S), <,s)) s
connected.

Proof of (1).

If x is maximal then To(x) = p(1x) = {¢(x)} and so ¢(x) is maximal.
If x is minimal then min(X) N |x = {x}, and so

{e(x)} = (min(X) N x) = min(Y) N Lo(x),

and therefore ¢(x) is minimal. O
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w
such that S = "x.
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w

such that S = {}"x. Similarly, (¢(S), <,(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w

such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).
Letx € S.
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w

such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w

such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
We will show that ¢(S) = 1"¢(x).
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).
Then (S, <g) is connected if and only if for all x € S there exists n € w

such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
We will show that ¢(S) = 1"¢(x).

Clearly, 11"¢(x) C ¢(S).
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).
Then (S, <g) is connected if and only if for all x € S there exists n € w

such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
We will show that ¢(S) = 1"¢(x).

Clearly, 11"¢(x) C »(S). For the reverse inclusion, since ¢ is
order-preserving, if y € {x then p(y) € Jp(x) and ¢(y) € ¢(S),
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w
such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
We will show that ¢(S) = 1"¢(x).

Clearly, 11"¢(x) C »(S). For the reverse inclusion, since ¢ is
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w
such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
We will show that ¢(S) = 1"¢(x).

Clearly, 11"¢(x) C »(S). For the reverse inclusion, since ¢ is
order-preserving, if y € {x then ¢(y) € Tp(x) and ¢(y) € ¢(S), and so
p(¥) € llp(x). Hence o({x) € 1lp(x).
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Properties of morphisms

@ Foreach x € S, let {x = SN{x.
@ Foreach x € S, let ¢o(x) = ©(S) N Lp(X).

Then (S, <g) is connected if and only if for all x € S there exists n € w
such that S = {"x. Similarly, (¢(S), <4(s)) is connected if and only if
for all x € S, there exists n € w such that ¢(S) = 1"p(x).

Proof of (2).

Let x € S. Since S is connected, there exists n € w such that S = {"x.
We will show that ¢(S) = 1"¢(x).

Clearly, 11"¢(x) C »(S). For the reverse inclusion, since ¢ is
order-preserving, if y € {x then ¢(y) € Tp(x) and ¢(y) € ¢(S), and so
o(¥) € 1e(x). Hence p({x) C 1le(x). It then follows inductively that
©(S) = ¢(1"x) C 11"(x), as required. O

v
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Fences
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Fences

Definition

A finite ordered set X is a fence if there is an enumeration x, .. ., X, of
elements of X such that the only order relations on X are given by one
of the following:

Q X1 <Xo>X3< > Xp_1 < Xp,
Q Xy <X >X3< -+ < Xp_1> Xp, Of,
eX1>X2<X3>"'>Xn_1<Xn.

We will permit the two-element fence under this definition, which is
covered by all of (1), (2) and (3).
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Fences

Definition
A finite ordered set X is a fence if there is an enumeration xq, ..., x, of

elements of X such that the only order relations on X are given by one
of the following:

Q X1 <Xo>X3< > Xp_1 < Xp,
Q Xy <X >X3< -+ < Xp_1> Xp, Of,
°X1>X2<X3>"'>Xn_1<Xn.

We will permit the two-element fence under this definition, which is
covered by all of (1), (2) and (3).

This is not the most user-friendly definition.
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Tails

Definition

Let X be an ordered set. We will say that a pair (14, 72) € X? is an
up-tail if 7 is maximal and |ry = {71, m2}.
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Tails

Definition

Let X be an ordered set. We will say that a pair (14, 72) € X? is an
up-tail if 7 is maximal and | = {71, 2}. Dually, it is a down-tail if 71 is
minimal and 171 = {7y, 72}. In either case we will say that the pair

(11, 72) is a tail and that X has a tail.
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Tails

Definition

Let X be an ordered set. We will say that a pair (71, 7) € X2 is an
up-tail if 7 is maximal and | = {71, 2}. Dually, it is a down-tail if 71 is
minimal and 171 = {7y, 72}. In either case we will say that the pair

(11, 72) is a tail and that X has a tail.

™ T2

(@) (b)

Figure: In (a), the pair (4, 72) forms an up-tail and in (b), the pair (71, 72)
forms a down-tail.
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Tails and fences

Lemma 1

Let X be an ordered set and let o be a morphism on X. If (x,y) is a
down-tail in X then (¢(x), ¢(y)) is a down-tail in p(X).
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Tails and fences

Lemma 1

Let X be an ordered set and let o be a morphism on X. If (x,y) is a
down-tail in X then (¢(x), ¢(y)) is a down-tail in p(X).

Proof.
(1) x is minimal so ¢(x) is minimal. (2) to(x) = e(1x) = {e(x), p(¥)} )
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Tails and fences

Lemma 1

Let X be an ordered set and let o be a morphism on X. If (x,y) is a
down-tail in X then (¢(x), ¢(y)) is a down-tail in p(X).

Proof.
(1) x is minimal so ¢(x) is minimal. (2) to(x) = e(1x) = {e(x), p(¥)} )

Lemma

Let X be a finite connected ordered set. The following are equivalent:
@ X is afence.
© X is has at least one tail, and (Vx € X) [tx| <3 and ||x| < 3.
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and g are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition

Let S and T be double-pointed ordered sets, and assume that
SNT =wo.
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition
Let S and T be double-pointed ordered sets, and assume that

SNT =o. Let S\, T be the double-pointed ordered set defined by the
following:
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition

Let S and T be double-pointed ordered sets, and assume that

SNT =o. Let S\, T be the double-pointed ordered set defined by the
following:

@ Underlying setis SU T
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition

Let S and T be double-pointed ordered sets, and assume that

SNT =o. Let S\, T be the double-pointed ordered set defined by the
following:

@ Underlying setis SU T
(=) SS\‘T _ SS U ST U {(OzT,,BS)}
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition

Let S and T be double-pointed ordered sets, and assume that

SNT =o. Let S\, T be the double-pointed ordered set defined by the
following:

@ Underlying setis SU T
(=) SS\‘T _ SS U ST U {(OzT,,BS)}

Q oS\T—,S
v
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition

Let S and T be double-pointed ordered sets, and assume that

SNT =o. Let S\, T be the double-pointed ordered set defined by the
following:

@ Underlying setis SU T

(=) SS\‘T _ SS U ST U {(OzT,,BS)}
Q oS\T— S

e ﬂS\T _ ,BT
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Extra structure

A double-pointed ordered setis a tuple S = (S; «, 3, <) such that «
and $ are nullary operations and < is an order on S. We will add a
further assumption that « is minimal and /3 is maximal.

Definition

Let S and T be double-pointed ordered sets, and assume that

SNT =o. Let S\, T be the double-pointed ordered set defined by the
following:

@ Underlying setis SU T

(=) SS\‘T _ SS U ST U {(OzT,,BS)}
Q oS\T— S

o BS\T _ ,BT

A double-pointed ordered set T is an ordered set with a down-tail if it
has a down-tail (1, 7) and of = 7y.

Chris Taylor Splittings GA Seminar, 4 May, 2017 13/21




SN\T iIIustrated
ﬂS\T

00 OC

Chris Taylor Splittings



S \ T illustrated
58 5T 5S\T

Chris Taylor Splittings



S \ T illustrated
58

Chris Taylor

5T

Splittings

5S\T



S \ T illustrated

() MY

Chris Taylor Splittings



S \ T illustrated

Chris Taylor Splittings



S \ T illustrated

Chris Taylor Splittings



S \ T illustrated

Chris Taylor Splittings



Important lemmas

Lemma 2

LetS and T be double-pointed ordered sets, assume S is connected,
and let o be a morphism on S\, T. If o(55) € ¢(T), then

P(SNT) = (7).
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Important lemmas

Lemma 2

LetS and T be double-pointed ordered sets, assume S is connected,
and let o be a morphism on S\, T. If o(55) € ¢(T), then
P(S\T) = o(T).

Lemma 3

Let'S be a double-pointed ordered set, let T be an ordered set with a
down-tail, and let o be a morphism on S\, T. If o(5%) ¢ ©(T) then 7}
is the only element of T that maps to ¢(77).
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Important lemmas

Lemma 2

LetS and T be double-pointed ordered sets, assume S is connected,
and let o be a morphism on S\, T. If o(55) € ¢(T), then

P(SNT) = (7).

Lemma 3

Let'S be a double-pointed ordered set, let T be an ordered set with a
down-tail, and let o be a morphism on S\, T. If o(5%) ¢ ©(T) then 7}
is the only element of T that maps to ¢(77).

Lemma 4

LetS be a connected ordered set, let F be a fence with a down-tail, and
let o be a morphism on'S \ F. If p(3%) ¢ ©(F) then o |r is one-to-one.
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Important lemmas

Lemma 5

LetS be a double-pointed ordered set, let F be a fence with a
down-tail, and let ¢ be a morphism onS \(F. Then, for all x,y € F:
@ I/f|F| > 2 and(x,y) is an up-tail in F then (x(x), ¢(y)) is an up-tail
in (S F).
@ Both [+(F) N lp(x)| < 8 and [(F) NTp(x)] < 3.
Consequently, (¢(F), <,(r)) is a fence.
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Important lemmas

Lemma 5

LetS be a double-pointed ordered set, let F be a fence with a
down-tail, and let ¢ be a morphism onS \(F. Then, for all x,y € F:

@ I/f|F| > 2 and(x,y) is an up-tail in F then (x(x), ¢(y)) is an up-tail
in p(S ™\ F).
@ Both [¢(F) N Lp(x)| < 3 and |p(F) N te(x)| < 8.
Consequently, (¢(F), <,(r)) is a fence.

Corollary

Let S be a connected ordered set, let F be a fence with a down-tail,
and let o be a morphism on' S \ F. If p|f is not one-to-one, then
©(S \(F) is a fence.
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Almost there

Let X be a finite double-pointed ordered set.
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Let X be a finite double-pointed ordered set. For each j € w, let
Xi =X x {i}.
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Almost there

Let X be a finite double-pointed ordered set. For each j € w, let

Xi = X x {i}. Now let X; be the double-pointed ordered set with
underlying set X;, with the order defined by (x, i) < (y, /) if and only if
X<y,
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Almost there

Let X be a finite double-pointed ordered set. For each j € w, let

Xi = X x {i}. Now let X; be the double-pointed ordered set with
underlying set X;, with the order defined by (x, i) < (y, /) if and only if
x < y,andlet X = (o, i) and % = (B, ).
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Almost there

Let X be a finite double-pointed ordered set. For each j € w, let

Xi = X x {i}. Now let X; be the double-pointed ordered set with
underlying set X;, with the order defined by (x, i) < (y, /) if and only if
x < y,and let o® = (a, i) and 8% = (3, i). Now, for each n € w, let

X(n):Xn\Xn_1 NN\ X2 N\ X

Note that oX” = (a, n) and X = (3, 1).
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Almost there

Let X be a finite double-pointed ordered set. For each j € w, let

Xi = X x {i}. Now let X; be the double-pointed ordered set with
underlying set X;, with the order defined by (x, i) < (y, /) if and only if
x < y,and let o® = (a, i) and 8% = (3, i). Now, for each n € w, let

X = X5 N\ Xnot NN\ X N X
Note that oX” = (a, n) and X = (3, 1).

Corollary

Let X be a finite double-pointed ordered set and let F be a fence with a
down-tail. If X is not a fence, and |F| > |X|, then for all n € w and every
morphism ¢ on X(") \F, we have p(X(M \ F) % X.
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Almost there

Let X be a finite double-pointed ordered set. For each j € w, let

Xi = X x {i}. Now let X; be the double-pointed ordered set with
underlying set X;, with the order defined by (x, i) < (y, /) if and only if
x < y,and let o® = (a, i) and 8% = (3, i). Now, for each n € w, let

X = X5 N\ Xnot NN\ X N X
Note that oX” = (a, n) and X = (3, 1).

Corollary

Let X be a finite double-pointed ordered set and let F be a fence with a
down-tail. If X is not a fence, and |F| > |X|, then for all n € w and every
morphism ¢ on X(") \F, we have p(X(M \ F) % X.

That is, U(X) £ U(X(" ~, F), which is one part of the splitting lemma.
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The other half

Recall that the diagram of a finite H™ algebra A is the term

Ap = N{[Xarb <> (Xa A X)] A [Xavb <+ (Xa V Xb)] A [Xamsb <> (Xa = Xp)]

A [Xea > ~Xa) A [Xo <> O] A [x1 <> 1] | @, b € A}
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The other half

Recall that the diagram of a finite H* algebra A is the term

Ap = N{[Xarb <> (Xa A X)] A [Xavb <+ (Xa V Xb)] A [Xamsb <> (Xa = Xp)]

A [Xea > ~Xa) A [Xo <> O] A [x1 <> 1] | @, b € A}

Lemma

Let X and Y be double-pointed ordered sets and let n € w. For each
U € U(X), map the variable xy — U;<,4 U x {i}. Then, in
u(x(n+1) \( Y),
Myy®) = | X
i<n+1

Then, dn(Au(x)(Y)) 75 %)
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If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.
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If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X| > 2. Then U(X) is not splitting.
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If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and
choose F so that it has a down-tail and apply Lemma 1.
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If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and
choose F so that it has a down-tail and apply Lemma 1. Similarly, if X
has no up-tails then choose F so that it has an up-tail and apply
Lemma 5(1).
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If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and
choose F so that it has a down-tail and apply Lemma 1. Similarly, if X
has no up-tails then choose F so that it has an up-tail and apply
Lemma 5(1). We require a special argument for “N-like” fences. Ol

v
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If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and
choose F so that it has a down-tail and apply Lemma 1. Similarly, if X
has no up-tails then choose F so that it has an up-tail and apply
Lemma 5(1). We require a special argument for “N-like” fences. Ol

v

Okay fine, but what if | X| =27

Chris Taylor Splittings GA Seminar, 4 May, 2017 20/21



If it splits, then it must be a fence

What if X is a fence? Provided that | X| > 2, we can choose a different
ordered set.

Lemma
Let X be a fence and assume |X| > 2. Then U(X) is not splitting.

Proof.

If X is a fence without a down-tail, then repeat the previous slides and
choose F so that it has a down-tail and apply Lemma 1. Similarly, if X
has no up-tails then choose F so that it has an up-tail and apply
Lemma 5(1). We require a special argument for “N-like” fences. Ol

v

Okay fine, but what if | X| =27

Theorem
It splits! (But it's not easy to prove) J
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In full generality

Theorem

LetV be a variety of H™ algebras that is closed under \, and contains
all finite fences. Then an algebra A splits the lattice of subvarieties of V
if and only if it is the 2-element boolean algebra or the 3-element chain.
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In full generality

Theorem

LetV be a variety of H™ algebras that is closed under \, and contains
all finite fences. Then an algebra A splits the lattice of subvarieties of V
if and only if it is the 2-element boolean algebra or the 3-element chain.

Further applications

@ All the arguments we have seen apply to double-Heyting algebras
and to congruence-regular double p-algebras.

@ Let H! (resp. DH,) denote the class of HT algebras (resp.
double-Heyting algebras) whose dual space has height at most n.

Each of these forms a variety, and provided that n > 1, contain all
finite fences, and are closed under \..
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