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The Banach-Tarski Theorem

Chapter 14 of Mathematical Conversations, written by Robert M. French,
begins with

It is theoretically possible, believe it or not, to cut an orange into
a finite number of pieces that can then be reassembled to produce
two oranges, each having exactly the same size and volume as
the first one. That’s right: with sufficient diligence and dexterity,
from any three-dimensional solid we can produce two new objects
exactly the same as the first one!

Mathematicians, upon first hearing of this result (otherwise known
as the Banach-Tarski Theorem), are generally somewhat blasé;
they know that funny counter-intuitive things crop up all the time
whenever infinity is involved. Most mathematicians encounter the
result for the first time in graduate school and file it away in their
strange results category (along with space-filling curves, Cantor
functions, and non-measurable sets).
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Equivalence by finite decomposition

Let X and Y be subsets of Rn.

We say that X and Y are equivalent by finite decomposition if there exists
finite partitions {X1,X2, . . . ,Xn} and {Y1,Y2, . . . ,Yn} of X and Y such
that Xi and Yi are congruent for each i ⩽ n.

Until otherwise noted, we write X ∼= Y if X and Y are equivalent by finite
decomposition. It is easily seen that ∼= is an equivalence relation.
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Hilbert’s merry-go-round

∼=
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Triangulating the square

Seems obvious:

1

∼=

2

√
2

Just cut along the diagonal, right?
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Triangulating the square

This finally gives. . .

∼=
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Hausdorff’s paradox

At this point in the chapter, French begins a sketch of the proof of the
Banach-Tarski theorem. The proof depends on Hausdorff’s paradox.

Hausdorff’s paradox
There is a countable subset D of the sphere S2 and a partition {A,B} of
S2\D such that S2\D ∼= A ∼= B.
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Applications

In the Applications section, French writes

So we have now shown that one basketball, if it is cut up carefully
enough, can spawn two. So much the better for the sports world,
but what about the banking community? Can a bank note, even of
the smallest denomination, produce two of its kind? Unfortunately
not. The mathematician A. Lindenbaum proved that no bounded
set in the plane can have a paradoxical decomposition, and a bank
note, sad to say, is a bounded set in the plane.

Page 14/27



Generalising

Let G be a group acting on a space X and let A,B ⊆ X .

▶ We will say that A and B are congruent (mod G ) if there exists
g ∈ G such that A = gB. In that case, we write A ≡ B mod G .

▶ We say that A and B are (finitely) G -equidecomposable if there exist
partitions {A1,A2, . . . ,An} and {B1,B2, . . . ,Bn} of A and B,
respectively, such that Ai ≡ Bi mod G , for all i . In that case, we
write A ∼= B mod G .

▶ If A is non-empty, we say that A is (finitely) G -paradoxical if there are
disjoint subsets A1,A2 ⊆ A such that A ∼= Ai mod G , for i ∈ {1, 2}.
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Rotations in the plane

Let C be the unit circle and let D be a countable subset of C .

We claim that
C ∼= C\D mod SO(2),

where SO(2) is the group of rotations in R2.

More generally:

Lemma

Let G be a group acting on a space X , and D ⊆ A ⊆ X. If
▶ D is countable,
▶ A is uncountable,
▶ there is a subgroup H ⩽ G that acts freely on A,

then A ∼= A\D mod G.

Acts freely on X means (∀x ∈ X )(∀g ∈ G ) gx = x =⇒ g = e.
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Actions on the real line

Abuse of notation: we let R denote both the group (R,+) and the set R.

Then R acts on itself.

Is there an R-paradoxical subset of R?

Proposition

If G is abelian, then there are no G -paradoxical sets.

▶ SO(2) and (R2,+) are abelian.

▶ SO(2)⋉R2 (formed by composing rotations and translations) is
non-abelian.
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Plane decompositions

Proposition

If G contains a free semigroup on 2 generators, then there exists S ⊆ G
such that S is G -paradoxical.

Let f , g be the generators of the free semigroup and let S be the
semigroup generated by them. That is, S is the set of words in the
alphabet {f , g}. Then fS and gS are disjoint subsets of S with
S ≡ fS ≡ gS mod G .

Theorem (Sierpinski–Mazurkiewicz Paradox)

There is a SO(2)⋉R2-paradoxical subset of R2.

▶ SO(2)⋉R2 contains a free semigroup S on 2 generators.

▶ The orbit of a point x under S is then paradoxical.
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Plane decompositions

▶ The previous result does not depend on the axiom of choice.

▶ But the paradoxical set is unbounded and countable, so may be
considered philosophically independent of any measure-theoretic
concerns.

But there are bounded uncountable paradoxical subsets of R2 (Theorem
14.15 of G. Tomkowicz and S. Wagon, 2016, based on work by W. Just,
1991 and G. A. Sherman, 1990)

Moreover, G. A. Sherman (1991) showed that any paradoxical subset of R2

must have empty interior, and if measurable, has Lebesgue measure zero.

Since 2× 0 = 0, this has no conflict with doubling area.
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Sherman’s proof

In general, a measure satisfies countable additivity: for all countable
collections of pairwise disjoint measurable sets X1,X2, . . .,

m

( ∞⋃
i=1

Xi

)
=

∞∑
i=1

m (Xi )

A Banach measure µ replaces countable additivity with finite additivity:
µ(A ∪ B) = µ(A) ∪ µ(B).

The Axiom of Choice implies the existence of non Lebesgue-measurable
sets. Sherman’s proof depends on a result of Banach (1923), which states
that the Lebesgue measure λ on R2 can be extended to a Banach measure
µ defined on all subsets of R2, with the property µ(gA) = µ(A) for all
g ∈ SO(2)⋉R2 and all A ⊆ R.

Solvability of SO(2)⋉R2 (and the Axiom of Choice) is sufficient.
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Free groups

Proposition

The free group on two generators F2 is finitely F2-paradoxical.

Let a, b generate F2. Recall that F2 is the set of reduced words in the
alphabet {a, a−1, b, b−1}.

Let Wc denote the set of reduced words beginning with c . Then,

{{e},Wa,Wb,Wa−1 ,Wb−1} partitions F2.

But so do both
{aWa−1 ,Wa} and {bWb−1 ,Wb}
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Free groups

Proposition

If F2 acts freely on a space X , then X is finitely F2-paradoxical.

X can be partitioned into the set of orbits under F2.

By the Axiom of Choice, we can choose a representative for each orbit.
Let R be the set of representatives. Then

X = F2R

Since F2 acts freely on X , the decomposition of F2 can be transferred to a
decomposition of X .
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Hausdorff’s paradox

Proposition

F2 embeds into SO(3).

Hausdorff first proved this in 1914. Hausdorff’s approach is to take two
rotations φ and ψ as follows:

▶ φ is a 180◦ rotation about an axis through the origin,

▶ ψ is a 120◦ rotation about an axis through the origin,

▶ cos(2θ) is transcendental, where θ is the angle between the two axes.

In 1976, B. Osofsky posed a problem in American Mathematical Monthly
to show that θ = 45◦ also works, with solutions published in 1978.

Osofsky’s version is employed by French in Chapter 14.
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Hausdorff’s paradox

T. Tao gives an explicit generating pair in a blog post:

a =
1

5

 3 4 0
−4 3 0
0 0 5

 , b =
1

5

5 0 0
0 3 −4
0 4 3



K. Satô (1995) gives the following pair of generators:

a =
1

7

 6 2 3
2 3 −6
−3 6 2

 , b =
1

7

 2 −6 3
6 3 2
−3 2 6


which also generate a subgroup that has no fixed points on Q3 ∩ S2.
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Hausdorff’s paradox

There is a minor problem: the embedding of F2 into SO(3) is not a free
action.

This is because each rotation will fix two points on the sphere: the ‘poles’
of the axis. Let D be the set of poles of (the embedding of) F2. This is
countable.

Thus we obtain Hausdorff’s paradox:

Hausdorff’s paradox. There is a countable subset D of the sphere S2

such that S2\D is SO(3)-paradoxical.
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The Banach-Tarski Theorem

Hausdorff’s paradox. There is a countable subset D of the sphere S2

such that S2\D is SO(3)-paradoxical.

An argument from earlier shows that a countable number of points can be
ignored. This gives:

Banach-Tarski on the sphere. The sphere S2 is SO(3)-paradoxical.

By “thickening” the decomposition of the sphere, we can extend
Hausdorff’s paradox to the closed unit ball with its centre removed.

Then, patching up the hole in the centre can be done by translating a
single point from the surface of the ball, then once again using the fact
that countably many points can be ignored.

The Banach-Tarski Theorem. The closed unit ball is
SO(3)⋉R3-paradoxical.
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