Double Heyting algebras vs. Boolean algebras with operators

Christopher J. Taylor

General Algebra Seminar October 14 2019

Boolean algebras with operators

A (finite signature) Boolean algebra with operators (BAO) is an algebra

$$\mathbf{A} = \langle A; \vee, \wedge, \neg, 0, 1, f_1, f_2, \dots f_n \rangle$$

such that

- $\langle A; \lor, \land, \neg, 0, 1
 angle$ is a Boolean algebra, and
- each f_i is a finitary *normal* meet-preserving operation.

Normal means that f(..., 1, ...) = 1, and meet-preserving here is interpreted coordinatewise:

$$f(\ldots, x \wedge y, \ldots) = f(\ldots, x, \ldots) \wedge f(\ldots, y, \ldots).$$

Boolean algebras with operators

A (finite signature) Boolean algebra with operators (BAO) is an algebra

$$\mathbf{A} = \langle A; \vee, \wedge, \neg, 0, 1, f_1, f_2, \dots f_n \rangle$$

such that

- $\langle A; \lor, \land, \neg, 0, 1
 angle$ is a Boolean algebra, and
- each f_i is a finitary *normal* meet-preserving operation.

Normal means that f(..., 1, ...) = 1, and meet-preserving here is interpreted coordinatewise:

$$f(\ldots, x \wedge y, \ldots) = f(\ldots, x, \ldots) \wedge f(\ldots, y, \ldots).$$

It must be noted that the definition of a BAO we are using is dual to the traditional sense. But, courtesy of the symmetry of Boolean algebras, that doesn't matter.

Relation algebras

The prototypical BAO is a relation algebra, first laid out by Tarski in 1948.

Definition

An algebra $\mathbf{A}=\langle A; \lor, \land, \circ, \smile, \neg, 0, 1, \mathsf{id}
angle$ is a relation algebra if

- $\langle A; \lor, \land, \neg, 0, 1
 angle$ is a Boolean algebra,
- $\langle A; \circ, \mathsf{id} \rangle$ is a monoid,
- $\blacktriangleright (\forall x, y, z, \in A) \ x \circ y \leqslant \neg z \Leftrightarrow \neg x \circ z \leqslant \neg y \Leftrightarrow z \circ \neg y \leqslant \neg x.$

The operation \circ is called composition and \sim converse.

Both \circ and \smile are join-preserving and 0-absorbing.

Given a Boolean algebra \mathbf{B} , its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $\mathsf{Con}(\mathbf{B}) \cong \mathsf{Fil}(\mathbf{B})$

Given a Boolean algebra \mathbf{B} , its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $\mathsf{Con}(\mathbf{B}) \cong \mathsf{Fil}(\mathbf{B})$

From congruence to filter:

$$F(\theta) = 1/\theta = \{x \in B \mid (x, 1) \in \theta\}.$$

Given a Boolean algebra \mathbf{B} , its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $\mathsf{Con}(B)\cong\mathsf{Fil}(B)$

From congruence to filter:

$$F(\theta) = 1/\theta = \{x \in B \mid (x, 1) \in \theta\}.$$

From filter to congruence:

$$\theta(F) = \{(x, y) \in B^2 \mid (\exists z \in F) \ x \land z = y \land z\}.$$

Given a Boolean algebra \mathbf{B} , its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $\mathsf{Con}(B)\cong\mathsf{Fil}(B)$

From congruence to filter:

$$F(\theta) = 1/\theta = \{x \in B \mid (x, 1) \in \theta\}.$$

From filter to congruence:

$$\theta(F) = \{(x, y) \in B^2 \mid (\exists z \in F) \ x \land z = y \land z\}.$$

Let $x \to y = \neg x \lor y$; then let $x \leftrightarrow y = (x \to y) \land (y \to x)$. It can be shown that

$$\theta(F) = \{(x, y) \in B^2 \mid x \leftrightarrow y \in F\}.$$

Let **B** be a BAO with unary operators f_1, \ldots, f_n . Given a congruence on the Boolean algebra reduct,

$$\theta(F) = \{(x, y) \in B^2 \mid x \leftrightarrow y \in F\},\$$

what would make it a congruence on \mathbf{B} ?

Let **B** be a BAO with unary operators f_1, \ldots, f_n . Given a congruence on the Boolean algebra reduct,

$$\theta(F) = \{(x, y) \in B^2 \mid x \leftrightarrow y \in F\},\$$

what would make it a congruence on \mathbf{B} ?

Simply demand that $\theta(F)$ is compatible with each f_i :

$$x \leftrightarrow y \in F \implies f_i x \leftrightarrow f_i y \in F$$

It can be shown that this is equivalent to the demand,

$$x \in F \implies f_i x \in F.$$

Definition

Let **B** be a unary BAO with operators f_1, \ldots, f_n . A filter *F* is called a *congruence-filter* if, for all $i \leq n$,

$$x \in F \implies f_i x \in F.$$

The situation for non-unary BAOs can be reduced to the unary case. For a normal operator f of arity n, define the unary operation

$$f^{(k)}(x) = f(0, \ldots, 0, x, 0, \ldots, 0),$$

where the x is in the k-th position.

For example, if f is 3-ary, then

$$f^{(1)}(x) = f(x,0,0), \quad f^{(2)}(x) = f(0,x,0), \quad f^{(3)}(x) = f(0,0,x)$$

The situation for non-unary BAOs can be reduced to the unary case. For a normal operator f of arity n, define the unary operation

$$f^{(k)}(x) = f(0, \ldots, 0, x, 0, \ldots, 0),$$

where the x is in the k-th position.

For example, if f is 3-ary, then

$$f^{(1)}(x) = f(x,0,0), \quad f^{(2)}(x) = f(0,x,0), \quad f^{(3)}(x) = f(0,0,x)$$

Let **B** be a BAO. Denote by \mathbf{B}^{\sharp} the algebra obtained by replacing each operator f of **B** with the set $\{f^{(k)} \mid k \leq \operatorname{arity}(f)\}$.

Proposition (Folklore)

The congruences on **B** are exactly the same as the congruences on \mathbf{B}^{\sharp} .

Congruence equivalence

Definition

Let **A** and **B** be algebras with the same underlying set but not necessarily the same signature. We will say that **A** and **B** are **congruence-equivalent** if Con(A) = Con(B) and write $A \rightleftharpoons B$.

Congruence equivalence

Definition

Let **A** and **B** be algebras with the same underlying set but not necessarily the same signature. We will say that **A** and **B** are **congruence-equivalent** if Con(A) = Con(B) and write $A \rightleftharpoons B$.

Thus $\mathbf{B} \rightleftharpoons \mathbf{B}^{\sharp}$ (where \mathbf{B}^{\sharp} is the unary reduction).

Congruence equivalence

Definition

Let **A** and **B** be algebras with the same underlying set but not necessarily the same signature. We will say that **A** and **B** are **congruence-equivalent** if Con(A) = Con(B) and write $A \rightleftharpoons B$.

Thus $\mathbf{B} \rightleftharpoons \mathbf{B}^{\sharp}$ (where \mathbf{B}^{\sharp} is the unary reduction).

We can reduce even further. For a unary BAO with operators f_1, \ldots, f_n , define the operation

$$dx := x \wedge f_1 x \wedge f_2 x \wedge \ldots f_n x,$$

and then let $\mathbf{B}^{\flat} = \langle B; \lor, \land, \neg, 0, 1, d \rangle$. (Aside: prepending d with $x \land$ is a convenience that ensures $dx \leq x$).

Proposition (Folklore)

If **B** is a BAO, then $\mathbf{B} \rightleftharpoons \mathbf{B}^{\flat}$

Heyting algebras

A Heyting algebra is an algebra $\bm{\mathsf{A}}=\langle {\mathsf{A}};\vee,\wedge,\rightarrow,0,1\rangle$ such that

- $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice, and
- \blacktriangleright \rightarrow is a binary operation satisfying

$$x \wedge y \leqslant z \iff y \leqslant x \rightarrow z$$

Heyting algebras

A Heyting algebra is an algebra $\bm{\mathsf{A}}=\langle {\mathsf{A}};\vee,\wedge,\rightarrow,0,1\rangle$ such that

- $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice, and
- \blacktriangleright \rightarrow is a binary operation satisfying

$$x \wedge y \leqslant z \iff y \leqslant x \to z.$$

The class of Heyting algebras is an equational class defined by

1. a set of identities defining bounded distributive lattices,

2.
$$x \land (x \rightarrow y) = x \land y$$
,
3. $x \land (y \rightarrow z) = x \land [(x \land y) \rightarrow (x \land z)]$,
4. $x \land [(y \land z) \rightarrow y] = x$.

Heyting algebras

A Heyting algebra is an algebra $\bm{\mathsf{A}}=\langle {\mathsf{A}};\vee,\wedge,\rightarrow,0,1\rangle$ such that

- $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice, and
- \blacktriangleright \rightarrow is a binary operation satisfying

$$x \wedge y \leqslant z \iff y \leqslant x \rightarrow z.$$

The class of Heyting algebras is an equational class defined by

1. a set of identities defining bounded distributive lattices,

2.
$$x \land (x \rightarrow y) = x \land y$$
,
3. $x \land (y \rightarrow z) = x \land [(x \land y) \rightarrow (x \land z)]$,
4. $x \land [(y \land z) \rightarrow y] = x$.

We let $\neg x = x \rightarrow 0$. This is called the pseudocomplement.

Proposition

Let **A** be a Heyting algebra. Then $Con(\mathbf{A}) \cong Fil(\mathbf{A})$ via the same map as for Boolean algebras.

The dual pseudocomplement

An operation \sim (on a bounded lattice) satisfying $x \lor y = 1 \iff y \ge \sim x$ is called a dual pseudocomplement operation.

An H^+-algebra is an algebra $\langle {\it A}; \lor, \land, \rightarrow, \sim, 0, 1 \rangle$ such that

- $\langle A; \lor, \land,
 ightarrow, 0, 1
 angle$ is a Heyting algebra, and
- $\blacktriangleright\,\sim$ is a dual pseudocomplement operation.

The dual pseudocomplement

An operation \sim (on a bounded lattice) satisfying $x \lor y = 1 \iff y \ge \sim x$ is called a dual pseudocomplement operation.

An H^+-algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \sim, 0, 1 \rangle$ such that

- $\langle A; \lor, \land,
 ightarrow, 0, 1
 angle$ is a Heyting algebra, and
- \blacktriangleright \sim is a dual pseudocomplement operation.

These, too, are equational. Just tack on some more equations:

1.
$$x \lor \sim (x \lor y) = x \lor \sim y$$
,
2. $\sim 1 = 0$,

3. ~~1 = 1.

The dual pseudocomplement

An operation \sim (on a bounded lattice) satisfying $x \lor y = 1 \iff y \ge \sim x$ is called a dual pseudocomplement operation.

An H^+-algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \sim, 0, 1 \rangle$ such that

- $\langle A; \lor, \land,
 ightarrow, 0, 1
 angle$ is a Heyting algebra, and
- \blacktriangleright \sim is a dual pseudocomplement operation.

These, too, are equational. Just tack on some more equations:

1.
$$x \lor \sim (x \lor y) = x \lor \sim y$$
,
2. $\sim 1 = 0$,
3. $\sim \sim 1 = 1$.

Theorem (Sankappanavar, 1985)

Let **A** be an H^+ -algebra and let F be a filter of **A**. Then F is a congruence on **A** if and only if F is closed under $\neg \sim$.

Double Heyting algebras

A double Heyting algebra is an algebra $\langle {\it A}; \lor, \land, \rightarrow, \div, 0, 1 \rangle$ such that

- $\langle A; \lor, \land, \rightarrow, 0, 1
 angle$ is a Heyting algebra, and
- \blacktriangleright $\dot{-}$ is a binary operation satisfying

$$x \lor y \geqslant z \iff y \geqslant z \div x$$

The class of double Heyting algebras is also equational.

Double Heyting algebras

A double Heyting algebra is an algebra $\langle {\it A}; \lor, \land, \rightarrow, \div, 0, 1 \rangle$ such that

- $\langle A; \lor, \land, \rightarrow, 0, 1
 angle$ is a Heyting algebra, and
- \div is a binary operation satisfying

$$x \lor y \geqslant z \iff y \geqslant z \stackrel{\cdot}{-} x$$

The class of double Heyting algebras is also equational.

The dual pseudocomplement is definable by $\sim x = 1 - x$.

Theorem (Köhler, 1980)

Let **A** be a double Heyting algebra and F a filter of **A**. Then $\theta(F)$ is a congruence on **A** if and only if F is closed under $\neg \sim$.

Double Heyting algebras

A double Heyting algebra is an algebra $\langle {\it A}; \lor, \land, \rightarrow, \div, 0, 1 \rangle$ such that

- $\langle A; \lor, \land,
 ightarrow, 0, 1
 angle$ is a Heyting algebra, and
- \div is a binary operation satisfying

$$x \lor y \geqslant z \iff y \geqslant z \stackrel{\cdot}{-} x$$

The class of double Heyting algebras is also equational.

The dual pseudocomplement is definable by $\sim x = 1 - x$.

Theorem (Köhler, 1980)

Let **A** be a double Heyting algebra and F a filter of **A**. Then $\theta(F)$ is a congruence on **A** if and only if F is closed under $\neg \sim$.

Corollary

A double Heyting algebra is congruence-equivalent to its H^+ -algebra term-reduct.

We will say that an algebra $\mathbf{A} = \langle A; M, \lor, \land, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

We will say that an algebra $\mathbf{A} = \langle A; M, \lor, \land, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

Let f: Aⁿ → A be a map. We will say that a filter F is compatible with f if, for all x₁, y₁,..., x_n, y_n ∈ A,

$$x_1 \leftrightarrow y_1, \ldots, x_n \leftrightarrow y_n \in F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.$$

We will say that an algebra $\mathbf{A} = \langle A; M, \lor, \land, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

▶ Let $f: A^n \to A$ be a map. We will say that a filter F is compatible with f if, for all $x_1, y_1, \ldots, x_n, y_n \in A$,

$$x_1 \leftrightarrow y_1, \ldots, x_n \leftrightarrow y_n \in F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.$$

▶ If *F* is compatible with every operation in *M*, then we say that *F* is compatible with *M*.

We will say that an algebra $\mathbf{A} = \langle A; M, \lor, \land, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

▶ Let $f: A^n \to A$ be a map. We will say that a filter F is compatible with f if, for all $x_1, y_1, \ldots, x_n, y_n \in A$,

$$x_1 \leftrightarrow y_1, \ldots, x_n \leftrightarrow y_n \in F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.$$

▶ If *F* is compatible with every operation in *M*, then we say that *F* is compatible with *M*.

Recall that we define $\theta(F) = \{(x, y) \in A^2 \mid x \leftrightarrow y \in F\}.$

Proposition

 $\theta(F)$ is a congruence on **A** if and only if F is compatible with M.

So we say that a filter compatible with M is a *congruence-filter*.

Page 11/23

The fundamental problem

For an expanded Heyting algebra A, find a unary term t in the language of A such that

F is a congruence-filter if and only if F is closed under t.

The fundamental problem

For an expanded Heyting algebra A, find a unary term t in the language of A such that

F is a congruence-filter if and only if F is closed under t.

A term meeting this condition will be called a *congruence-filter term on* A or a *compatability term for* M.

The fundamental problem

For an expanded Heyting algebra A, find a unary term t in the language of A such that

F is a congruence-filter if and only if F is closed under t.

A term meeting this condition will be called a *congruence-filter term on* A or a *compatability term for* M.

Proposition

If t_1 is a compatability term for M_1 and t_2 is a compatability term for M_2 , then the term t defined by $tx = t_1x \wedge t_2x$ is a compatability term for $M_1 \cup M_2$.

Therefore, if M is finite, it would suffice to find a compatability term for each element of M.

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

 $fb \ge fa \wedge fb = f(a \wedge b)$

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

 $fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b))$

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leqslant fa \rightarrow fb$
Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq fa \rightarrow fb$, and similarly, $f(b \rightarrow a) \leq fb \rightarrow fa$.

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq fa \rightarrow fb$, and similarly, $f(b \rightarrow a) \leq fb \rightarrow fa$. Now, if $a \leftrightarrow b \in F$, then $a \rightarrow b \in F$ and $b \rightarrow a \in F$.

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq fa \rightarrow fb$, and similarly, $f(b \rightarrow a) \leq fb \rightarrow fa$. Now, if $a \leftrightarrow b \in F$, then $a \rightarrow b \in F$ and $b \rightarrow a \in F$. Because F is closed under f, we then have $f(a \rightarrow b) \in F$ and $f(b \rightarrow a) \in F$.

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq fa \rightarrow fb$, and similarly, $f(b \rightarrow a) \leq fb \rightarrow fa$. Now, if $a \leftrightarrow b \in F$, then $a \rightarrow b \in F$ and $b \rightarrow a \in F$. Because F is closed under f, we then have $f(a \rightarrow b) \in F$ and $f(b \rightarrow a) \in F$. It then follows that $fa \rightarrow fb \in F$ and $fb \rightarrow fa \in F$, and hence $fa \leftrightarrow fb \in F$.

Lemma 1 (Hasimoto, 2001)

Let **A** be a Heyting algebra, let f be a unary map on A and let F be a filter on **A**. If f is a normal operator, then F is compatible with f if and only if F is closed under f.

Proof.

(⇒) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (⇐) First note that,

$$fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq fa \rightarrow fb$, and similarly, $f(b \rightarrow a) \leq fb \rightarrow fa$. Now, if $a \leftrightarrow b \in F$, then $a \rightarrow b \in F$ and $b \rightarrow a \in F$. Because F is closed under f, we then have $f(a \rightarrow b) \in F$ and $f(b \rightarrow a) \in F$. It then follows that $fa \rightarrow fb \in F$ and $fb \rightarrow fa \in F$, and hence $fa \leftrightarrow fb \in F$. Hence, F is compatible with f.

Normalising

The following construction is due to Hasimoto (2001).

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. For each $a \in A$, define the set $f^{\leftrightarrow}(a)$ by

$$f^{\leftrightarrow}(a) := \{f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \mid (\forall i \leq n) \ x_i \leftrightarrow y_i \geq a\}.$$

For any set K of maps on A, let $[K]: A \rightarrow A$ be the partial operation

$$[K]a = \bigwedge \bigcup \{ f^{\leftrightarrow}(a) \mid f \in K \}.$$

We say that [K] exists in **A** if it is defined for all $a \in A$. If $K = \{f\}$ we will write [f] instead.

Normalising

Lemma 2 (Hasimoto, 2001)

Let **A** be a Heyting algebra and let K be a set of operations on A. If [K] exists, then [K] is a normal operator, and [[K]] = [K].

Definition

Let **A** be an expanded Heyting algebra and let M denote the set of operations on **A**. Let **[A]** denote the algebra

 $\langle A; \lor, \land, \rightarrow, [M], 0, 1 \rangle.$

Theorem 3 (Hasimoto, 2001)

Let **A** be an expanded Heyting algebra and assume that [M] exists in **A**.

- 1. $CFil([A]) \subseteq CFil(A)$.
- 2. $\mathbf{A} \rightleftharpoons [\mathbf{A}]$ if and only if $(\forall a \in A) [M]a \in \mathrm{CFg}^{\mathbf{A}}(a)$.

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$.

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$.

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$.

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a := \bigwedge_{i \leq n} x_i \leftrightarrow y_i \in F$.

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a := \bigwedge_{i \leq n} x_i \leftrightarrow y_i \in F$. We now have

 $f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \in f^{\leftrightarrow}(a),$

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a := \bigwedge_{i \leq n} x_i \leftrightarrow y_i \in F$. We now have

$$f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \in f^{\leftrightarrow}(a),$$

and so

$$[M]a\leqslant f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n).$$

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a := \bigwedge_{i \leq n} x_i \leftrightarrow y_i \in F$. We now have

$$f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \in f^{\leftrightarrow}(a),$$

and so

$$[M]a\leqslant f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n).$$

Using the previous two lemmas, we have $[M]a \in F$, and so

$$f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \in F,$$

as required.

For part (1), assume that F is compatible with [M]. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a := \bigwedge_{i \leq n} x_i \leftrightarrow y_i \in F$. We now have

$$f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \in f^{\leftrightarrow}(a),$$

and so

$$[M]a\leqslant f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n).$$

Using the previous two lemmas, we have $[M]a \in F$, and so

$$f(x_1,\ldots,x_n) \leftrightarrow f(y_1,\ldots,y_n) \in F,$$

as required.

For part (2), the condition $(\forall a \in A) \ [M]a \in CFg^{\mathbf{A}}(a)$ is equivalent to the claim that every congruence-filter of **A** is closed under [M]. Part (2) then holds after a brief explanation.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Proof.

Suppose we have such a term and let F be a filter of **A**. It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [**A**]. Then by Theorem 3, F is a congruence-filter of **A**.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Proof.

Suppose we have such a term and let F be a filter of **A**. It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [**A**]. Then by Theorem 3, F is a congruence-filter of **A**.

Conversely, let F be a congruence-filter of **A** and let $x \in F$.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Proof.

Suppose we have such a term and let F be a filter of **A**. It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [**A**]. Then by Theorem 3, F is a congruence-filter of **A**.

Conversely, let *F* be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Proof.

Suppose we have such a term and let F be a filter of **A**. It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [A]. Then by Theorem 3, F is a congruence-filter of A.

Conversely, let *F* be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$. But since [M]1 = 1, we have t1 = 1, and so $(tx, 1) \in \theta(F)$.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Proof.

Suppose we have such a term and let F be a filter of **A**. It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [**A**]. Then by Theorem 3, F is a congruence-filter of **A**.

Conversely, let *F* be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$. But since [M]1 = 1, we have t1 = 1, and so $(tx, 1) \in \theta(F)$. Hence, $tx \in F$.

Lemma

Let **A** be an expanded Heyting algebra and assume [M] exists in **A**. If there is a term t in the language of **A** such that tx = [M]x, then t is a normal filter term on **A**.

Proof.

Suppose we have such a term and let F be a filter of **A**. It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [**A**]. Then by Theorem 3, F is a congruence-filter of **A**.

Conversely, let *F* be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$. But since [M]1 = 1, we have t1 = 1, and so $(tx, 1) \in \theta(F)$. Hence, $tx \in F$.

Although nice, Hasimoto's construction does not have to produce a term function on \mathbf{A} , even when it exists.

Some existence conditions

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. For each $k \leq n$, let $f^k: A \to A$ denote the unary map given by

$$f^{(k)}x = f(0, \ldots, 0, x, 0, \ldots, 0),$$

where x is in the k-th position. We will call f an operator if:

1.
$$f(..., x \land y, ...) = f(..., x, ...) \land f(..., y, ...)$$
, and,
2. $f(..., 1, ...) = 1$.

Some existence conditions

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. For each $k \leq n$, let $f^k: A \to A$ denote the unary map given by

$$f^{(k)}x = f(0, \ldots, 0, x, 0, \ldots, 0),$$

where x is in the k-th position. We will call f an operator if:

1.
$$f(..., x \land y, ...) = f(..., x, ...) \land f(..., y, ...)$$
, and,
2. $f(..., 1, ...) = 1$.

Lemma (Hasimoto, 2001)

Let **A** be a Heyting algebra and let $f: A^n \to A$ be an operator. Then [f] exists, and

$$[f]x = \bigwedge_{k \leqslant n} f^{(k)}x.$$

Some existence conditions

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. We will call f an *anti-operator* if:

1.
$$f(..., x \land y, ...) = f(..., x, ...) \lor f(..., y, ...)$$
, and
2. $f(..., 1, ...) = 0$.

Lemma

Let **A** be a Heyting algebra and let f be an anti-operator. Then [f] exists, and

$$[f]x = \bigwedge_{k \leqslant n} \neg f^{(k)}x.$$

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \lor 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \lor 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$. Now, since $x \land y \leqslant x$, we have

$$(x \wedge y) \lor \sim (x \wedge y) \leqslant x \lor \sim (x \wedge y),$$

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \lor 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$. Now, since $x \land y \le x$, we have

$$(x \wedge y) \lor \sim (x \wedge y) \leqslant x \lor \sim (x \wedge y),$$

and then $x \lor \sim (x \land y) = 1$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \lor 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$. Now, since $x \land y \le x$, we have

$$(x \wedge y) \lor \sim (x \wedge y) \leqslant x \lor \sim (x \wedge y),$$

and then $x \lor \sim (x \land y) = 1$. So $\sim (x \land y) \ge \sim x$, and similarly for y. Hence, $\sim (x \land y) \ge \sim x \lor \sim y$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \lor 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$. Now, since $x \land y \le x$, we have

$$(x \wedge y) \lor \sim (x \wedge y) \leqslant x \lor \sim (x \wedge y),$$

and then $x \lor \sim (x \land y) = 1$. So $\sim (x \land y) \ge \sim x$, and similarly for y. Hence, $\sim (x \land y) \ge \sim x \lor \sim y$. On the other hand (using distributivity) we have $(x \land y) \lor (\sim x \lor \sim y) = (x \lor \sim x \lor \sim y) \land (y \lor \sim x \lor \sim y) = 1$,

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \ge \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \lor 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$. Now, since $x \land y \le x$, we have

$$(x \wedge y) \lor \sim (x \wedge y) \leqslant x \lor \sim (x \wedge y),$$

and then $x \lor \sim (x \land y) = 1$. So $\sim (x \land y) \ge \sim x$, and similarly for y. Hence, $\sim (x \land y) \ge \sim x \lor \sim y$. On the other hand (using distributivity) we have $(x \land y) \lor (\sim x \lor \sim y) = (x \lor \sim x \lor \sim y) \land (y \lor \sim x \lor \sim y) = 1$, and so $\sim x \lor \sim y \ge \sim (x \land y)$.

Page 20/23

Corollary

Let **A** be a Heyting algebra and let \sim be a dual pseudocomplement operation on **A**. Then $[\sim] = \neg \sim$.

Corollary

Let **A** be a Heyting algebra and let \sim be a dual pseudocomplement operation on **A**. Then $[\sim] = \neg \sim$.

Corollary (Sankappanavar, 1985)

Let **A** be an H⁺-algebra. Then $\neg \sim$ is a congruence-filter term on **A**.

We also saw

Theorem (Köhler, 1980)

Let **A** be a double Heyting algebra and F a filter of **A**. Then $\theta(F)$ is a congruence on **A** if and only if F is closed under $\neg \sim$.

We will obtain this result as well by showing that $[-] = \neg \sim$.

Page 21/23

Double Heyting algebras

Proof that $[\div] = \neg \sim$.

By definition, we have $[\div]a = \bigwedge \div^{\leftrightarrow}(a)$, where

$$\dot{-}^{\leftrightarrow}(a) = \{(x_1 \dot{-} x_2) \leftrightarrow (y_1 \dot{-} y_2) \mid x_i \leftrightarrow y_i \geqslant a\}.$$

We will show that

1. $\neg \sim a \in \dot{\rightarrow}^{\leftrightarrow}(a)$, and 2. $x \ge \neg \sim a$, for all $x \in \dot{\rightarrow}^{\leftrightarrow}(a)$
Double Heyting algebras

Proof that $[\div] = \neg \sim$.

By definition, we have $[\div]a = \bigwedge \div (a)$, where

$$\dot{-}^{\leftrightarrow}(a) = \{(x_1 \dot{-} x_2) \leftrightarrow (y_1 \dot{-} y_2) \mid x_i \leftrightarrow y_i \geqslant a\}.$$

We will show that

1. $\neg \sim a \in \dot{\rightarrow} \Leftrightarrow (a)$, and 2. $x \ge \neg \sim a$, for all $x \in \dot{\rightarrow} \Leftrightarrow (a)$ (1) Since $1 \leftrightarrow 1 = 1 \ge a$ and $a \leftrightarrow 1 = a$, it follows that $(1 \dot{-} a) \leftrightarrow (1 \dot{-} 1) \in \dot{\rightarrow} \Leftrightarrow (a)$

But $1 \div 1 = 0$ and $1 \div a = \sim a$, so $\sim a \leftrightarrow 0 = \neg \sim a \in \div^{\leftrightarrow}(a)$.

Proof that $[\div] = \neg \sim$.

(2) Note that $x \leftrightarrow y \ge z$ if and only if $x \wedge z = y \wedge z$.

Proof that $[\div] = \neg \sim$.

(2) Note that $x \leftrightarrow y \ge z$ if and only if $x \wedge z = y \wedge z$. So we will prove that, if $x_i \leftrightarrow y_i \ge a$, then $(x_1 \div x_2) \wedge \neg \sim a = (y_1 \div y_2) \wedge \neg \sim a$.

Proof that $[\div] = \neg \sim$.

(2) Note that $x \leftrightarrow y \ge z$ if and only if $x \wedge z = y \wedge z$. So we will prove that, if $x_i \leftrightarrow y_i \ge a$, then $(x_1 \div x_2) \wedge \neg \sim a = (y_1 \div y_2) \wedge \neg \sim a$. We have,

$$egin{array}{lll} x_i \leftrightarrow y_i \geqslant a \implies x_i \wedge a = y_i \wedge a \ \implies (x_i \wedge a) \lor \sim a = (y_i \wedge a) \lor \sim a \ \implies x_i \lor \sim a = y_i \lor \sim a. \end{array}$$

The equation $x \lor (y - z) = x \lor [(y \lor x) - (z \lor x)]$ holds in all double Heyting algebras. So,

$$\sim a \lor (x_1 \div x_2) = \sim a \lor [(x_1 \lor \sim a) \div (x_2 \lor \sim a)]$$
$$= \sim a \lor [(y_1 \lor \sim a) \div (y_2 \lor \sim a)]$$
$$= \sim a \lor (y_1 \div y_2).$$

Taking a meet with $\neg \sim a$ will finish the job.