Double Heyting algebras vs. Boolean algebras with operators

Christopher J. Taylor

General Algebra Seminar October 14 2019

Boolean algebras with operators

A (finite signature) Boolean algebra with operators (BAO) is an algebra

$$
\textbf{A}=\langle A;\vee,\wedge,\neg,0,1,f_1,f_2,\dots f_n\rangle
$$

such that

- \blacktriangleright $\langle A; \vee, \wedge, \neg, 0, 1 \rangle$ is a Boolean algebra, and
- each f_i is a finitary *normal* meet-preserving operation.

Normal means that $f(\ldots,1,\ldots)=1$, and meet-preserving here is interpreted coordinatewise:

$$
f(\ldots,x\wedge y,\ldots)=f(\ldots,x,\ldots)\wedge f(\ldots,y,\ldots).
$$

Boolean algebras with operators

A (finite signature) Boolean algebra with operators (BAO) is an algebra

$$
\textbf{A}=\langle A;\vee,\wedge,\neg,0,1,f_1,f_2,\dots f_n\rangle
$$

such that

- \blacktriangleright $\langle A; \vee, \wedge, \neg, 0, 1 \rangle$ is a Boolean algebra, and
- each f_i is a finitary *normal* meet-preserving operation.

Normal means that $f(\ldots,1,\ldots)=1$, and meet-preserving here is interpreted coordinatewise:

$$
f(\ldots,x\wedge y,\ldots)=f(\ldots,x,\ldots)\wedge f(\ldots,y,\ldots).
$$

It must be noted that the definition of a BAO we are using is dual to the traditional sense. But, courtesy of the symmetry of Boolean algebras, that doesn't matter.

Relation algebras

The prototypical BAO is a *relation algebra*, first laid out by Tarski in 1948.

Definition

An algebra $\mathbf{A} = \langle A; \vee, \wedge, \circ, \vee, \neg, 0, 1, \text{id} \rangle$ is a relation algebra if

$$
\blacktriangleright \langle A; \vee, \wedge, \neg, 0, 1 \rangle \text{ is a Boolean algebra, }
$$

$$
\blacktriangleright \langle A; \circ, \text{id} \rangle \text{ is a monoid,}
$$

$$
\blacktriangleright (\forall x, y, z, \in A) \ x \circ y \leqslant \neg z \Leftrightarrow \neg x \circ z \leqslant \neg y \Leftrightarrow z \circ \neg y \leqslant \neg x.
$$

The operation \circ is called composition and \circ converse.

Both \circ and \circ are join-preserving and 0-absorbing.

Given a Boolean algebra B, its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $Con(B) \cong Fil(B)$

Given a Boolean algebra B, its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $Con(B) \cong Fil(B)$

From congruence to filter:

$$
F(\theta) = 1/\theta = \{x \in B \mid (x, 1) \in \theta\}.
$$

Given a Boolean algebra B, its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $Con(B) \cong Fil(B)$

From congruence to filter:

$$
F(\theta) = 1/\theta = \{x \in B \mid (x, 1) \in \theta\}.
$$

From filter to congruence:

$$
\theta(F) = \{(x, y) \in B^2 \mid (\exists z \in F) \times \wedge z = y \wedge z\}.
$$

Given a Boolean algebra B, its congruences are in one-to-one correspondence with filters of the underlying lattice; moreover, the lattice of one is isomorphic to the other:

 $Con(B) \cong Fil(B)$

From congruence to filter:

$$
F(\theta) = 1/\theta = \{x \in B \mid (x, 1) \in \theta\}.
$$

From filter to congruence:

$$
\theta(F) = \{(x, y) \in B^2 \mid (\exists z \in F) \times \wedge z = y \wedge z\}.
$$

Let $x \to y = \neg x \lor y$; then let $x \leftrightarrow y = (x \to y) \land (y \to x)$.

It can be shown that

$$
\theta(F) = \{(x, y) \in B^2 \mid x \leftrightarrow y \in F\}.
$$

Let **B** be a BAO with unary operators f_1, \ldots, f_n . Given a congruence on the Boolean algebra reduct,

$$
\theta(F) = \{ (x, y) \in B^2 \mid x \leftrightarrow y \in F \},\
$$

what would make it a congruence on **B**?

Let **B** be a BAO with unary operators f_1, \ldots, f_n . Given a congruence on the Boolean algebra reduct,

$$
\theta(F) = \{(x, y) \in B^2 \mid x \leftrightarrow y \in F\},\
$$

what would make it a congruence on **B**?

Simply demand that $\theta(\mathcal{F})$ is compatible with each f_i :

$$
x \leftrightarrow y \in F \implies f_i x \leftrightarrow f_i y \in F
$$

It can be shown that this is equivalent to the demand,

$$
x\in F\implies f_ix\in F.
$$

Definition

Let **B** be a unary BAO with operators f_1, \ldots, f_n . A filter F is called a congruence-filter if, for all $i \leq n$,

$$
x\in F\implies f_i x\in F.
$$

The situation for non-unary BAOs can be reduced to the unary case. For a normal operator f of arity n , define the unary operation

$$
f^{(k)}(x) = f(0,\ldots,0,x,0,\ldots,0),
$$

where the x is in the k -th position.

For example, if f is 3-ary, then

$$
f^{(1)}(x) = f(x,0,0), \quad f^{(2)}(x) = f(0,x,0), \quad f^{(3)}(x) = f(0,0,x)
$$

The situation for non-unary BAOs can be reduced to the unary case. For a normal operator f of arity n , define the unary operation

$$
f^{(k)}(x) = f(0, \ldots, 0, x, 0, \ldots, 0),
$$

where the x is in the k -th position.

For example, if f is 3-ary, then

$$
f^{(1)}(x) = f(x,0,0), \quad f^{(2)}(x) = f(0,x,0), \quad f^{(3)}(x) = f(0,0,x)
$$

Let $\, {\bf B} \,$ be a BAO. Denote by $\, {\bf B}^\sharp \,$ the algebra obtained by replacing each operator f of $\mathbf B$ with the set $\{f^{(k)}\mid k\leqslant \mathsf{arity}(f)\}.$

Proposition (Folklore)

The congruences on **B** are exactly the same as the congruences on B^{\sharp} .

Congruence equivalence

Definition

Let **A** and **B** be algebras with the same underlying set but not necessarily the same signature. We will say that A and B are congruence-equivalent if $Con(\mathbf{A}) = Con(\mathbf{B})$ and write $\mathbf{A} \rightleftharpoons \mathbf{B}$.

Congruence equivalence

Definition

Let \bf{A} and \bf{B} be algebras with the same underlying set but not necessarily the same signature. We will say that A and B are congruence-equivalent if $Con(\mathbf{A}) = Con(\mathbf{B})$ and write $\mathbf{A} \rightleftharpoons \mathbf{B}$.

Thus $\mathsf{B} \rightleftharpoons \mathsf{B}^\sharp$ (where B^\sharp is the unary reduction).

Congruence equivalence

Definition

Let A and B be algebras with the same underlying set but not necessarily the same signature. We will say that A and B are congruence-equivalent if $Con(\mathbf{A}) = Con(\mathbf{B})$ and write $\mathbf{A} \rightleftharpoons \mathbf{B}$.

Thus $\mathsf{B} \rightleftharpoons \mathsf{B}^\sharp$ (where B^\sharp is the unary reduction).

We can reduce even further. For a unary BAO with operators f_1, \ldots, f_n , define the operation

$$
dx := x \wedge f_1x \wedge f_2x \wedge \ldots f_nx,
$$

and then let $\mathbf{B}^{\flat} = \langle B; \vee, \wedge, \neg, 0, 1, d \rangle$. (Aside: prepending d with $x \wedge$ is a convenience that ensures $dx \leq x$).

Proposition (Folklore)

If **B** is a BAO, then $B \rightleftharpoons B^{\flat}$

Heyting algebras

A Heyting algebra is an algebra $\mathbf{A} = \langle A; \vee, \wedge, \to, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice, and
- $\blacktriangleright \rightarrow$ is a binary operation satisfying

$$
x \wedge y \leqslant z \iff y \leqslant x \to z.
$$

Heyting algebras

A Heyting algebra is an algebra $\mathbf{A} = \langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice, and
- \rightarrow \rightarrow is a binary operation satisfying

$$
x \wedge y \leqslant z \iff y \leqslant x \to z.
$$

The class of Heyting algebras is an equational class defined by

1. a set of identities defining bounded distributive lattices,

2.
$$
x \wedge (x \rightarrow y) = x \wedge y
$$
,
\n3. $x \wedge (y \rightarrow z) = x \wedge [(x \wedge y) \rightarrow (x \wedge z)]$,
\n4. $x \wedge [(y \wedge z) \rightarrow y] = x$.

Heyting algebras

A Heyting algebra is an algebra $\mathbf{A} = \langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice, and
- \rightarrow \rightarrow is a binary operation satisfying

$$
x \wedge y \leqslant z \iff y \leqslant x \to z.
$$

The class of Heyting algebras is an equational class defined by

1. a set of identities defining bounded distributive lattices,

2.
$$
x \wedge (x \rightarrow y) = x \wedge y
$$
,
\n3. $x \wedge (y \rightarrow z) = x \wedge [(x \wedge y) \rightarrow (x \wedge z)]$,
\n4. $x \wedge [(y \wedge z) \rightarrow y] = x$.

We let $\neg x = x \rightarrow 0$. This is called the pseudocomplement.

Proposition

Let **A** be a Heyting algebra. Then Con(**A**) \cong Fil(**A**) via the same map as for Boolean algebras.

The dual pseudocomplement

An operation \sim (on a bounded lattice) satisfying $x \vee y = 1 \iff y \geq \sim x$ is called a dual pseudocomplement operation.

An H⁺-algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \sim, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and
- $\triangleright \sim$ is a dual pseudocomplement operation.

The dual pseudocomplement

An operation \sim (on a bounded lattice) satisfying $x \vee y = 1 \iff y \geq \sim x$ is called a dual pseudocomplement operation.

An H⁺-algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \sim, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and
- $\triangleright \sim$ is a dual pseudocomplement operation.

These, too, are equational. Just tack on some more equations:

1.
$$
x \vee \sim (x \vee y) = x \vee \sim y,
$$

\n2.
$$
\sim 1 = 0,
$$

\n3.
$$
\sim \sim 1 = 1.
$$

The dual pseudocomplement

An operation \sim (on a bounded lattice) satisfying $x \vee y = 1 \iff y \geq \sim x$ is called a dual pseudocomplement operation.

An H⁺-algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \sim, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and
- $\triangleright \sim$ is a dual pseudocomplement operation.

These, too, are equational. Just tack on some more equations:

1.
$$
x \lor \sim (x \lor y) = x \lor \sim y
$$
,
\n2. $\sim 1 = 0$,
\n3. $\sim \sim 1 = 1$.

Theorem (Sankappanavar, 1985)

Let **A** be an H⁺-algebra and let F be a filter of **A**. Then F is a congruence on **A** if and only if F is closed under $\neg \sim$.

Double Heyting algebras

A double Heyting algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \div, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and
- ► ÷ is a binary operation satisfying

$$
x \vee y \geqslant z \iff y \geqslant z \div x
$$

The class of double Heyting algebras is also equational.

Double Heyting algebras

A double Heyting algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \div, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and
- \triangleright \div is a binary operation satisfying

$$
x \vee y \geqslant z \iff y \geqslant z \div x
$$

The class of double Heyting algebras is also equational.

The dual pseudocomplement is definable by $\sim x = 1 \div x$.

Theorem (Köhler, 1980)

Let **A** be a double Heyting algebra and F a filter of **A**. Then $\theta(F)$ is a congruence on **A** if and only if F is closed under $\neg \sim$.

Double Heyting algebras

A double Heyting algebra is an algebra $\langle A; \vee, \wedge, \rightarrow, \div, 0, 1 \rangle$ such that

- \blacktriangleright $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra, and
- \triangleright \div is a binary operation satisfying

$$
x \vee y \geqslant z \iff y \geqslant z \div x
$$

The class of double Heyting algebras is also equational.

The dual pseudocomplement is definable by $\sim x = 1 \div x$.

Theorem (Köhler, 1980)

Let **A** be a double Heyting algebra and F a filter of **A**. Then $\theta(F)$ is a congruence on **A** if and only if F is closed under $\neg \sim$.

Corollary

A double Heyting algebra is congruence-equivalent to its H^+ -algebra term-reduct.

We will say that an algebra $\mathbf{A} = \langle A; M, \vee, \wedge, \to, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

We will say that an algebra $\mathbf{A} = \langle A; M, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

Let $f: A^n \to A$ be a map. We will say that a filter F is compatible with f if, for all $x_1, y_1, \ldots, x_n, y_n \in A$,

$$
x_1 \leftrightarrow y_1, \ldots, x_n \leftrightarrow y_n \in F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.
$$

We will say that an algebra $\mathbf{A} = \langle A; M, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

Let $f: A^n \to A$ be a map. We will say that a filter F is compatible with f if, for all $x_1, y_1, \ldots, x_n, y_n \in A$,

$$
x_1 \leftrightarrow y_1, \ldots, x_n \leftrightarrow y_n \in F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.
$$

If F is compatible with every operation in M, then we say that F is compatible with M.

We will say that an algebra $\mathbf{A} = \langle A; M, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is an expanded Heyting algebra if $\langle A; \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and M is a set of operations on A.

Let $f: A^n \to A$ be a map. We will say that a filter F is compatible with f if, for all $x_1, y_1, \ldots, x_n, y_n \in A$,

$$
x_1 \leftrightarrow y_1, \ldots, x_n \leftrightarrow y_n \in F \implies f(x_1, \ldots, x_n) \leftrightarrow f(y_1, \ldots, y_n) \in F.
$$

If F is compatible with every operation in M, then we say that F is compatible with M.

Recall that we define $\theta(F) = \{(x, y) \in A^2 \mid x \leftrightarrow y \in F\}.$

Proposition

 $\theta(F)$ is a congruence on **A** if and only if F is compatible with M.

So we say that a filter compatible with M is a *congruence-filter*.

Page 11/23

The fundamental problem

For an expanded Heyting algebra A , find a unary term t in the language of A such that

 F is a congruence-filter if and only if F is closed under t .

The fundamental problem

For an expanded Heyting algebra \bf{A} , find a unary term t in the language of A such that

F is a congruence-filter if and only if F is closed under t.

A term meeting this condition will be called a *congruence-filter term on* $\mathbf A$ or a compatability term for M.

The fundamental problem

For an expanded Heyting algebra \bf{A} , find a unary term t in the language of A such that

 F is a congruence-filter if and only if F is closed under t.

A term meeting this condition will be called a *congruence-filter term on* $\mathbf A$ or a compatability term for M.

Proposition

If t_1 is a compatability term for M_1 and t_2 is a compatability term for M_2 , then the term t defined by $tx = t_1x \wedge t_2x$ is a compatability term for $M_1 \cup M_2$.

Therefore, if M is finite, it would suffice to find a compatability term for each element of M.

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

 $fb \geq f$ a \wedge $fb = f$ (a \wedge b)

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

 $fb \geq fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b))$

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq f(a \rightarrow fb)$
Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq f(a \rightarrow fb)$, and similarly, $f(b \to a) \leqslant fb \to fa$.

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq f(a \rightarrow fb)$, and similarly, $f(b \to a) \leq f b \to fa$. Now, if $a \leftrightarrow b \in F$, then $a \to b \in F$ and $b \to a \in F$.

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq f(a \rightarrow fb)$, and similarly, $f(b \to a) \leq f(b \to fa)$. Now, if $a \leftrightarrow b \in F$, then $a \to b \in F$ and $b \to a \in F$. Because F is closed under f, we then have $f(a \rightarrow b) \in F$ and $f(b \rightarrow a) \in F$.

Page 13/23

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq f(a \rightarrow fb)$, and similarly, $f(b \to a) \leq f(b \to fa)$. Now, if $a \leftrightarrow b \in F$, then $a \to b \in F$ and $b \to a \in F$. Because F is closed under f, we then have $f(a \rightarrow b) \in F$ and $f(b \to a) \in F$. It then follows that $fa \to fb \in F$ and $fb \to fa \in F$, and hence $f_a \leftrightarrow fh \in F$.

Lemma 1 (Hasimoto, 2001)

Let \bf{A} be a Heyting algebra, let f be a unary map on A and let \bf{F} be a filter on A . If f is a normal operator, then F is compatible with f if and only if F is closed under f .

Proof.

 (\Rightarrow) As $x \leftrightarrow 1 = x$, if $x \in F$ then $fx = fx \leftrightarrow 1 = fx \leftrightarrow f1 \in F$. (\Leftarrow) First note that,

$$
fb \geqslant fa \wedge fb = f(a \wedge b) = f(a \wedge (a \rightarrow b)) = fa \wedge f(a \rightarrow b)
$$

Thus, by definition of \rightarrow , we have $f(a \rightarrow b) \leq f(a \rightarrow fb)$, and similarly, $f(b \to a) \leq f(b \to fa)$. Now, if $a \leftrightarrow b \in F$, then $a \to b \in F$ and $b \to a \in F$. Because F is closed under f, we then have $f(a \rightarrow b) \in F$ and $f(b \to a) \in F$. It then follows that $fa \to fb \in F$ and $fb \to fa \in F$, and hence $fa \leftrightarrow fb \in F$. Hence, F is compatible with f.

Normalising

The following construction is due to Hasimoto (2001).

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. For each $a \in A$, define the set $f^{\leftrightarrow}(a)$ by

$$
f^{\leftrightarrow}(a):=\{f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\mid (\forall i\leqslant n)\ x_i\leftrightarrow y_i\geqslant a\}.
$$

For any set K of maps on A, let $[K]$: $A \rightarrow A$ be the partial operation

$$
[\mathsf{K}]a = \bigwedge \bigcup \{f^{\leftrightarrow}(a) \mid f \in \mathsf{K}\}.
$$

We say that $[K]$ exists in **A** if it is defined for all $a \in A$. If $K = \{f\}$ we will write $[f]$ instead.

Normalising

Lemma 2 (Hasimoto, 2001)

Let **A** be a Heyting algebra and let K be a set of operations on A. If $[K]$ exists, then $[K]$ is a normal operator, and $[[K]] = [K]$.

Definition

Let \bf{A} be an expanded Heyting algebra and let M denote the set of operations on A . Let $[A]$ denote the algebra

 $\langle A; \vee, \wedge, \rightarrow, [M], 0, 1 \rangle$.

Theorem 3 (Hasimoto, 2001)

Let **A** be an expanded Heyting algebra and assume that $[M]$ exists in **A**.

- 1. CFil($[A]$) \subset CFil(A).
- 2. $A \rightleftharpoons [A]$ if and only if $(\forall a \in A)$ $[M]$ a $\in \mathrm{CFg}^{\mathbf{A}}(a)$.

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$.

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$.

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$.

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a := \bigwedge_{i \leq n} x_i \leftrightarrow y_i \in F$.

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a:=\bigwedge_{i\leqslant n} x_i\leftrightarrow y_i\in F.$ We now have

 $f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\in f^{\leftrightarrow}(a),$

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a:=\bigwedge_{i\leqslant n} x_i\leftrightarrow y_i\in F.$ We now have

$$
f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\in f^{\leftrightarrow}(a),
$$

and so

$$
[M]a\leqslant f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n).
$$

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a:=\bigwedge_{i\leqslant n} x_i\leftrightarrow y_i\in F.$ We now have

$$
f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\in f^{\leftrightarrow}(a),
$$

and so

$$
[M]a\leqslant f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n).
$$

Using the previous two lemmas, we have $[M]_a \in F$, and so

$$
f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\in F,
$$

as required.

For part (1), assume that F is compatible with $[M]$. We must show that it is compatible with f for every $f \in M$. So, let $f \in M$ be *n*-ary and let $x_1, y_1, \ldots, x_n, y_n \in A$. Assume that for each $i \leq n$ we have $x_i \leftrightarrow y_i \in F$. It then follows that $a:=\bigwedge_{i\leqslant n} x_i\leftrightarrow y_i\in F.$ We now have

$$
f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\in f^{\leftrightarrow}(a),
$$

and so

$$
[M]a\leqslant f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n).
$$

Using the previous two lemmas, we have $[M]_a \in F$, and so

$$
f(x_1,\ldots,x_n)\leftrightarrow f(y_1,\ldots,y_n)\in F,
$$

as required.

For part (2), the condition (∀a ∈ A) [M]a \in CFg $^{\mathbf{A}}($ a) is equivalent to the claim that every congruence-filter of \bf{A} is closed under $[M]$. Part (2) then holds after a brief explanation.

Lemma

Let A be an expanded Heyting algebra and assume $[M]$ exists in A . If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Lemma

Let **A** be an expanded Heyting algebra and assume $[M]$ exists in **A**. If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of \bf{A} . It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of $[A]$. Then by Theorem [3,](#page-42-0) F is a congruence-filter of \mathbf{A} .

Lemma

Let **A** be an expanded Heyting algebra and assume $[M]$ exists in **A**. If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of \bf{A} . It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of $[A]$. Then by Theorem [3,](#page-42-0) F is a congruence-filter of \mathbf{A} .

Conversely, let F be a congruence-filter of **A** and let $x \in F$.

Lemma

Let **A** be an expanded Heyting algebra and assume $[M]$ exists in **A**. If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of \bf{A} . It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of $[A]$. Then by Theorem [3,](#page-42-0) F is a congruence-filter of \mathbf{A} .

Conversely, let F be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$.

Lemma

Let **A** be an expanded Heyting algebra and assume $[M]$ exists in **A**. If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of \bf{A} . It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of $[A]$. Then by Theorem [3,](#page-42-0) F is a congruence-filter of \mathbf{A} .

Conversely, let F be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$. But since $[M]1 = 1$, we have $t1 = 1$, and so $(tx, 1) \in \theta(F)$.

Lemma

Let **A** be an expanded Heyting algebra and assume $[M]$ exists in **A**. If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of \bf{A} . It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of $[A]$. Then by Theorem [3,](#page-42-0) F is a congruence-filter of \mathbf{A} .

Conversely, let F be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$. But since $[M]1 = 1$, we have $t1 = 1$, and so $(tx, 1) \in \theta(F)$. Hence, $tx \in F$.

Lemma

Let **A** be an expanded Heyting algebra and assume $[M]$ exists in **A**. If there is a term t in the language of **A** such that $tx = [M]x$, then t is a normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of \bf{A} . It is required to show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of $[A]$. Then by Theorem [3,](#page-42-0) F is a congruence-filter of \mathbf{A} .

Conversely, let F be a congruence-filter of **A** and let $x \in F$. Since $x \leftrightarrow 1 = x$, we have $(x, 1) \in \theta(F)$, and so $(tx, t1) \in \theta(F)$. But since $[M]1 = 1$, we have $t1 = 1$, and so $(tx, 1) \in \theta(F)$. Hence, $tx \in F$.

Although nice, Hasimoto's construction does not have to produce a term function on A, even when it exists.

Some existence conditions

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. For each $k \leq n$, let $f^k\colon A\to A$ denote the unary map given by

$$
f^{(k)}x = f(0, \ldots, 0, x, 0, \ldots, 0),
$$

where x is in the k -th position. We will call f an operator if:

1.
$$
f(..., x \wedge y,...) = f(..., x,...) \wedge f(..., y,...)
$$
, and,
2. $f(..., 1,...) = 1$.

Some existence conditions

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. For each $k \leq n$, let $f^k\colon A\to A$ denote the unary map given by

$$
f^{(k)}x = f(0, \ldots, 0, x, 0, \ldots, 0),
$$

where x is in the k -th position. We will call f an operator if:

1.
$$
f(..., x \wedge y,...) = f(..., x,...) \wedge f(..., y,...)
$$
, and,
2. $f(...,1,...) = 1$.

Lemma (Hasimoto, 2001)

Let **A** be a Heyting algebra and let $f: A^n \to A$ be an operator. Then [f] exists, and

$$
[f]x = \bigwedge_{k \leq n} f^{(k)}x.
$$

Some existence conditions

Definition

Let **A** be a Heyting algebra and let $f: A^n \to A$ be a map. We will call t an anti-operator if:

1.
$$
f(...,x \wedge y,...) = f(...,x,...) \vee f(...,y,...),
$$
 and,
2. $f(...,1,...) = 0.$

Lemma

Let A be a Heyting algebra and let f be an anti-operator. Then $[f]$ exists, and

$$
[f]x = \bigwedge_{k \leq n} \neg f^{(k)}x.
$$

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \lor y = 1 \iff y \geq \sim x$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \vee 0 = 1$, we have $0 \geq \sim 1$, so $\sim 1 = 0$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \vee 0 = 1$, we have $0 \geq \sim 1$, so $\sim 1 = 0$. Now, since $x \wedge y \leq x$, we have

$$
(x \wedge y) \vee \sim (x \wedge y) \leq x \vee \sim (x \wedge y),
$$

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \vee 0 = 1$, we have $0 \geq \sim 1$, so $\sim 1 = 0$. Now, since $x \wedge y \leq x$, we have

$$
(x \wedge y) \vee \sim (x \wedge y) \leq x \vee \sim (x \wedge y),
$$

and then $x \vee \sim (x \wedge y) = 1$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \vee 0 = 1$, we have $0 \geq \sim 1$, so $\sim 1 = 0$. Now, since $x \wedge y \leq x$, we have

$$
(x \wedge y) \vee \sim (x \wedge y) \leq x \vee \sim (x \wedge y),
$$

and then $x \vee \neg(x \wedge y) = 1$. So $\neg(x \wedge y) \geq \neg x$, and similarly for y. Hence, $\sim(x \wedge y) \geqslant \sim x \vee \sim y$.

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \vee 0 = 1$, we have $0 \ge \sim 1$, so $\sim 1 = 0$. Now, since $x \wedge y \le x$, we have

$$
(x \wedge y) \vee \sim (x \wedge y) \leq x \vee \sim (x \wedge y),
$$

and then $x \vee \neg(x \wedge y) = 1$. So $\neg(x \wedge y) \geq \neg(x \wedge y)$ and similarly for y. Hence, \sim (x \land y) \geq ~x \lor ~y. On the other hand (using distributivity) we have $(x \wedge y) \vee (\sim x \vee \sim y) = (x \vee \sim x \vee \sim y) \wedge (y \vee \sim x \vee \sim y) = 1$

Recall that a unary operation \sim is a dual pseudocomplement operation if it satisfies the equivalence $x \vee y = 1 \iff y \geq \sim x$.

Lemma

The map \sim is an anti-operator.

Proof.

Since $1 \vee 0 = 1$, we have $0 \geq \sim 1$, so $\sim 1 = 0$. Now, since $x \wedge y \leq x$, we have

$$
(x \wedge y) \vee \sim (x \wedge y) \leq x \vee \sim (x \wedge y),
$$

and then $x \vee \neg(x \wedge y) = 1$. So $\neg(x \wedge y) \geq \neg(x \wedge y)$ and similarly for y. Hence, \sim (x \land y) \geq ~x \lor ~y. On the other hand (using distributivity) we have $(x \wedge y) \vee (\sim x \vee \sim y) = (x \vee \sim x \vee \sim y) \wedge (y \vee \sim x \vee \sim y) = 1$ and so \sim x $\vee \sim$ y $\geq \sim$ (x \wedge y).

Page 20/23

Corollary

Let A be a Heyting algebra and let \sim be a dual pseudocomplement operation on **A**. Then $[\sim] = \neg \sim$.

Corollary

Let A be a Heyting algebra and let \sim be a dual pseudocomplement operation on **A**. Then $[\sim] = \neg \sim$.

Corollary (Sankappanavar, 1985)

Let **A** be an H⁺-algebra. Then $\neg \sim$ is a congruence-filter term on **A**.

We also saw

Theorem (Köhler, 1980)

Let **A** be a double Heyting algebra and F a filter of **A**. Then $\theta(F)$ is a congruence on **A** if and only if F is closed under $\neg \sim$.

We will obtain this result as well by showing that $[-] = \neg \sim$.

Page 21/23

Double Heyting algebras

Proof that $[-] = \neg \sim$.

By definition, we have $[-]a = \bigwedge -\overline{a}$ where

$$
\div^{\leftrightarrow}(a) = \{ (x_1 \div x_2) \leftrightarrow (y_1 \div y_2) \mid x_i \leftrightarrow y_i \geqslant a \}.
$$

We will show that

1. $\neg \sim a \in \div^{\leftrightarrow}(a)$, and 2. $x \geq -\infty$ a, for all $x \in -\frac{+\infty}{2}$
Double Heyting algebras

Proof that $[-] = \neg \sim$.

By definition, we have $[-]a = \bigwedge -\overline{a}$ (a) , where

$$
\div^{\leftrightarrow}(a) = \{ (x_1 \div x_2) \leftrightarrow (y_1 \div y_2) \mid x_i \leftrightarrow y_i \geqslant a \}.
$$

We will show that

1.
$$
\neg \sim a \in \rightharpoonup^{\leftrightarrow}(a)
$$
, and
\n2. $x \ge \neg \sim a$, for all $x \in \rightharpoonup^{\leftrightarrow}(a)$
\n(1) Since $1 \leftrightarrow 1 = 1 \ge a$ and $a \leftrightarrow 1 = a$, it follows that
\n
$$
(1 - a) \leftrightarrow (1 - 1) \in \rightharpoonup^{\leftrightarrow}(a)
$$
\nBut $1 \div 1 = 0$ and $1 \div a = \sim a$, so $\sim a \leftrightarrow 0 = \neg \sim a \in \rightharpoonup^{\leftrightarrow}(a)$.

Proof that $[-] = \neg \sim$.

(2) Note that $x \leftrightarrow y \geq z$ if and only if $x \land z = y \land z$.

Proof that $\left[-\right] = \neg \sim$.

(2) Note that $x \leftrightarrow y \geq z$ if and only if $x \land z = y \land z$. So we will prove that, if $x_i \leftrightarrow y_i \ge a$, then $(x_1 - x_2) \land \neg \sim a = (y_1 - y_2) \land \neg \sim a$.

Proof that $\left[-\right] = \neg \sim$.

(2) Note that $x \leftrightarrow y \geq z$ if and only if $x \land z = y \land z$. So we will prove that, if $x_i \leftrightarrow y_i \ge a$, then $(x_1 - x_2) \land \neg \sim a = (y_1 - y_2) \land \neg \sim a$. We have,

$$
x_i \leftrightarrow y_i \geq a \implies x_i \land a = y_i \land a
$$

\n
$$
\implies (x_i \land a) \lor \sim a = (y_i \land a) \lor \sim a
$$

\n
$$
\implies x_i \lor \sim a = y_i \lor \sim a.
$$

The equation $x \vee (y \div z) = x \vee [(y \vee x) \div (z \vee x)]$ holds in all double Heyting algebras. So,

$$
\sim a \vee (x_1 \div x_2) = \sim a \vee [(x_1 \vee \sim a) \div (x_2 \vee \sim a)]
$$

= $\sim a \vee [(y_1 \vee \sim a) \div (y_2 \vee \sim a)]$
= $\sim a \vee (y_1 \div y_2)$.

Taking a meet with $\neg \sim a$ will finish the job.