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Boolean algebras with operators

A (finite signature) Boolean algebra with operators (BAO) is an algebra
A= (AV,A~,0,1f,f,...0h)

such that
» (A;V,A,—,0,1) is a Boolean algebra, and
» each f; is a finitary normal meet-preserving operation.

Normal means that f(...,1,...) =1, and meet-preserving here is
interpreted coordinatewise:

ooy xAy,co)=1F(..,x, ... )ANF(.yy, 0.
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Boolean algebras with operators

A (finite signature) Boolean algebra with operators (BAO) is an algebra
A= (AV,A~,0,1f,f,...0h)

such that
» (A;V,A,—,0,1) is a Boolean algebra, and
» each f; is a finitary normal meet-preserving operation.

Normal means that f(...,1,...) =1, and meet-preserving here is
interpreted coordinatewise:

ooy xAy,co)=1F(..,x, ... )ANF(.yy, 0.

It must be noted that the definition of a BAO we are using is dual to the
traditional sense. But, courtesy of the symmetry of Boolean algebras, that
doesn’t matter.
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Relation algebras

The prototypical BAO is a relation algebra, first laid out by Tarski in 1948.
Definition
An algebra A = (A;V,A,0,~,—,0,1,id) is a relation algebra if

» (A;V,A\,—,0,1) is a Boolean algebra,

» (A;o,id) is a monoid,

> (Vx,y,z,E A) xoy < "z& wxo0z< 1y & zovwy < X,

The operation o is called composition and — converse.

Both o and - are join-preserving and 0-absorbing.
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Filters

Given a Boolean algebra B, its congruences are in one-to-one
correspondence with filters of the underlying lattice; moreover, the lattice
of one is isomorphic to the other:

Con(B) = Fil(B)
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Filters

Given a Boolean algebra B, its congruences are in one-to-one
correspondence with filters of the underlying lattice; moreover, the lattice

of one is isomorphic to the other:
Con(B) = Fil(B)

From congruence to filter:

F(0)=1/0 = {x € B | (x,1) € }.
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Filters

Given a Boolean algebra B, its congruences are in one-to-one

correspondence with filters of the underlying lattice; moreover, the lattice
of one is isomorphic to the other:

Con(B) = Fil(B)
From congruence to filter:

F(0)=1/0 = {x € B | (x,1) € }.

From filter to congruence:

O(F)={(x,y)€B?|(3z€ F) xAz=y A z}.
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Filters

Given a Boolean algebra B, its congruences are in one-to-one
correspondence with filters of the underlying lattice; moreover, the lattice
of one is isomorphic to the other:

Con(B) = Fil(B)
From congruence to filter:
F(0)=1/0 ={xe€ B|(x,1) € 0}.
From filter to congruence:
O(F)={(x,y)€B?|(3z€ F) xAz=y A z}.

Let x >y =—xVy;thenlet x>y = (x = y) A (y — x).

It can be shown that
O(F) = {(x,y) € B> | x>y € F}.
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Congruences
Let B be a BAO with unary operators f1,.. ., f,.
Given a congruence on the Boolean algebra reduct,

0(F) ={(x,y) € B? | x &+ y € F},

what would make it a congruence on B?
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Congruences
Let B be a BAO with unary operators f1,.. ., f,.
Given a congruence on the Boolean algebra reduct,

0(F)={(x,y) € B* | x & y € F},
what would make it a congruence on B?
Simply demand that 6(F) is compatible with each f;:
x<yeF = fixofiyeF
It can be shown that this is equivalent to the demand,
xeF = fixeF.
Definition

Let B be a unary BAO with operators f1,..., f,. A filter F is called a
congruence-filter if, for all i < n,

xe€F = fixeF.
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Congruences

The situation for non-unary BAOs can be reduced to the unary case. For a
normal operator f of arity n, define the unary operation

f(x) = £(0,...,0,x,0,...,0),
where the x is in the k-th position.

For example, if f is 3-ary, then

FO(x) = £(x,0,0), FP(x)=7£(0,x,0), F3x)=7(0,0,x)
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Congruences

The situation for non-unary BAOs can be reduced to the unary case. For a
normal operator f of arity n, define the unary operation

f(x) = £(0,...,0,x,0,...,0),

where the x is in the k-th position.

For example, if f is 3-ary, then
FO(x) = £(x,0,0),  FP(x) =£(0,x,0), FO(x)=£(0,0.x)

Let B be a BAO. Denote by Bf the algebra obtained by replacing each
operator f of B with the set {f(K) | k < arity(f)}.

Proposition (Folklore) J

The congruences on B are exactly the same as the congruences on BY.
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Congruence equivalence

Definition

Let A and B be algebras with the same underlying set but not necessarily
the same signature. We will say that A and B are congruence-equivalent
if Con(A) = Con(B) and write A = B.
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Congruence equivalence

Definition
Let A and B be algebras with the same underlying set but not necessarily

the same signature. We will say that A and B are congruence-equivalent
if Con(A) = Con(B) and write A = B.

Thus B = BF (where B is the unary reduction).
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Congruence equivalence

Definition
Let A and B be algebras with the same underlying set but not necessarily

the same signature. We will say that A and B are congruence-equivalent
if Con(A) = Con(B) and write A = B.

Thus B = BF (where B is the unary reduction).

We can reduce even further. For a unary BAO with operators fi, ..., f,,
define the operation

dx ;== x N ix A bx A ... fhx,

and then let B” = (B;V, A, —,0,1,d).
(Aside: prepending d with x A is a convenience that ensures dx < x).

Proposition (Folklore)
IfB is a BAO, then B = B’ J
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Heyting algebras

A Heyting algebra is an algebra A = (A; V, A, —,0, 1) such that
» (A;V,A,0,1) is a bounded distributive lattice, and
» — is a binary operation satisfying

XNy<z << y<x—z
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Heyting algebras

A Heyting algebra is an algebra A = (A; V, A, —,0, 1) such that
» (A;V,A,0,1) is a bounded distributive lattice, and
» — is a binary operation satisfying

XNy<z << y<x—z

The class of Heyting algebras is an equational class defined by
1. a set of identities defining bounded distributive lattices,
2. xN(x—=y)=xAYy,

3. xAN(y = z)=xAN[(xANy) = (xAz)],
4. xN[(y Nz) = y]=x.
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Heyting algebras

A Heyting algebra is an algebra A = (A; V, A, —,0, 1) such that
» (A;V,A,0,1) is a bounded distributive lattice, and
» — is a binary operation satisfying

XNy<z << y<x—z

The class of Heyting algebras is an equational class defined by
1. a set of identities defining bounded distributive lattices,
2. xN(x—=y)=xAYy,

3. xAN(y = z)=xAN[(xANy) = (xAz)],
4. xN[(y Nz) = y]=x.

We let =x = x — 0. This is called the pseudocomplement.

Proposition

Let A be a Heyting algebra. Then Con(A) = Fil(A) via the same map as
for Boolean algebras.
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The dual pseudocomplement
An operation ~ (on a bounded lattice) satisfying x Vy =1 <= y > ~x
is called a dual pseudocomplement operation.

An Ht-algebra is an algebra (A; V, A, —,~,0,1) such that
» (A;V,A,—,0,1) is a Heyting algebra, and

> ~ is a dual pseudocomplement operation.
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The dual pseudocomplement

An operation ~ (on a bounded lattice) satisfying x Vy =1 <= y > ~x
is called a dual pseudocomplement operation.
An Ht-algebra is an algebra (A; V, A, —,~,0,1) such that

» (A;V,A,—,0,1) is a Heyting algebra, and

> ~ is a dual pseudocomplement operation.

These, too, are equational. Just tack on some more equations:
1. xV~(xVy)=xVry,
2. ~1=0,
3. ~~1l=1
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The dual pseudocomplement

An operation ~ (on a bounded lattice) satisfying x Vy =1 <= y > ~x
is called a dual pseudocomplement operation.
An Ht-algebra is an algebra (A; V, A, —,~,0,1) such that

» (A;V,A,—,0,1) is a Heyting algebra, and

> ~ is a dual pseudocomplement operation.

These, too, are equational. Just tack on some more equations:
1. xV~(xVy)=xVry,
2. ~1=0,
3. ~~1l=1

Theorem (Sankappanavar, 1985)

Let A be an H"-algebra and let F be a filter of A. Then F is a
congruence on A if and only if F is closed under —~.
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Double Heyting algebras
A double Heyting algebra is an algebra (A; vV, A, —, =, 0,1) such that
» (A;V,\,—,0,1) is a Heyting algebra, and

» — is a binary operation satisfying
XVyz2z < yz>2z-x

The class of double Heyting algebras is also equational.
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Double Heyting algebras
A double Heyting algebra is an algebra (A; vV, A, —, =, 0,1) such that
» (A;V,\,—,0,1) is a Heyting algebra, and

» — is a binary operation satisfying
XVyz2z < yz>2z-x
The class of double Heyting algebras is also equational.

The dual pseudocomplement is definable by ~x =1 = x.

Theorem (Kohler, 1980)

Let A be a double Heyting algebra and F a filter of A. Then 0(F) is a
congruence on A if and only if F is closed under —~.
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Double Heyting algebras

A double Heyting algebra is an algebra (A; vV, A, —, =, 0,1) such that
» (A;V,\,—,0,1) is a Heyting algebra, and
» — is a binary operation satisfying

XVyz2z < yz>2z-x

The class of double Heyting algebras is also equational.
The dual pseudocomplement is definable by ~x =1 = x.

Theorem (Kohler, 1980)

Let A be a double Heyting algebra and F a filter of A. Then 0(F) is a
congruence on A if and only if F is closed under —~.

Corollary

A double Heyting algebra is congruence-equivalent to its H"-algebra
term-reduct.

v
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Expansions of Heyting algebras
We will say that an algebra A = (A; M,V, A, —,0,1) is an expanded

Heyting algebra if (A;V,A,—,0,1) is a Heyting algebra and M is a set of
operations on A.
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Expansions of Heyting algebras

We will say that an algebra A = (A; M,V, A, —,0,1) is an expanded
Heyting algebra if (A;V,A,—,0,1) is a Heyting algebra and M is a set of
operations on A.

» Let f: A” — A be a map. We will say that a filter F is compatible
with f if, for all x1,y1,...,%n, ¥n € A,

X1 Y,y Xnyn€F = f(x1,...,%xn) <> f(y1,...,¥n) € F.
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Expansions of Heyting algebras

We will say that an algebra A = (A; M,V, A, —,0,1) is an expanded
Heyting algebra if (A;V,A,—,0,1) is a Heyting algebra and M is a set of
operations on A.

» Let f: A” — A be a map. We will say that a filter F is compatible
with f if, for all x1,y1,...,%n, ¥n € A,

X1 Y,y Xnyn€F = f(x1,...,%xn) <> f(y1,...,¥n) € F.

» If F is compatible with every operation in M, then we say that F is
compatible with M.
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Expansions of Heyting algebras

We will say that an algebra A = (A; M,V, A, —,0,1) is an expanded
Heyting algebra if (A;V,A,—,0,1) is a Heyting algebra and M is a set of
operations on A.

» Let f: A” — A be a map. We will say that a filter F is compatible
with f if, for all x1,y1,...,%n, ¥n € A,

X1 Y,y Xnyn€F = f(x1,...,%xn) <> f(y1,...,¥n) € F.

» If F is compatible with every operation in M, then we say that F is
compatible with M.

Recall that we define §(F) = {(x,y) € A% | x <+ y € F}.

Proposition
O(F) is a congruence on A if and only if F is compatible with M. J

So we say that a filter compatible with M is a congruence-filter.
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The fundamental problem

For an expanded Heyting algebra A, find a unary term t in the language
of A such that

F is a congruence-filter if and only if F is closed under t.
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The fundamental problem

For an expanded Heyting algebra A, find a unary term t in the language
of A such that

F is a congruence-filter if and only if F is closed under t.

A term meeting this condition will be called a congruence-filter term on A
or a compatability term for M.
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The fundamental problem

For an expanded Heyting algebra A, find a unary term t in the language
of A such that

F is a congruence-filter if and only if F is closed under t.

A term meeting this condition will be called a congruence-filter term on A
or a compatability term for M.

Proposition

If t1 is a compatability term for My and t, is a compatability term for M,
then the term t defined by tx = tix A tox is a compatability term for
My U M.

Therefore, if M is finite, it would suffice to find a compatability term for
each element of M.
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.
(=)Asx<+<1=x,if xc Fthenfx=1fx+1=f<« fleF.
(<) First note that,

fb>fanfb=f(aAb)

Ol

v
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.
(=)Asx<+<1=x,if xc Fthenfx=1fx+1=f<« fleF.
(<) First note that,

fb>fanfb=f(aAb)=1f(an(a— b))

Ol

v
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.
(=)Asx<+<1=x,if xc Fthenfx=1fx+1=f<« fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Ol

v
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.

(=)Asx+<1=xifxe Fthenfx=fx+1=f«+ fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Thus, by definition of —, we have f(a — b) < fa — b

Ol

v
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.

(=)Asx+<1=xifxe Fthenfx=fx+1=f«+ fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Thus, by definition of —, we have f(a — b) < fa — fb, and similarly,
f(b—a) < fb— fa.

Ol

v
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.

(=)Asx+<1=xifxe Fthenfx=fx+1=f«+ fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Thus, by definition of —, we have f(a — b) < fa — fb, and similarly,
f(b—a)<fb— fa. Now, ifa<> b€ F,thena— b€ Fand b— acF.

Ol
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.

(=)Asx+<1=xifxe Fthenfx=fx+1=f«+ fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Thus, by definition of —, we have f(a — b) < fa — fb, and similarly,
f(b—a)<fb— fa. Now, ifa<> b€ F,thena— b€ Fand b— acF.
Because F is closed under f, we then have f(a — b) € F and

f(b— a) € F.

Ol
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.

(=)Asx+<1=xifxe Fthenfx=fx+1=f«+ fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Thus, by definition of —, we have f(a — b) < fa — fb, and similarly,
f(b—a)<fb— fa. Now, ifa<> b€ F,thena— b€ Fand b— acF.
Because F is closed under f, we then have f(a — b) € F and

f(b— a) € F. It then follows that fa— fb € F and fb — fa € F, and
hence fa <+ fb € F. O

v
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Heyting algebras with operators

Lemma 1 (Hasimoto, 2001)

Let A be a Heyting algebra, let f be a unary map on A and let F be a
filter on A. If f is a normal operator, then F is compatible with f if and
only if F is closed under f.

Proof.

(=)Asx+<1=xifxe Fthenfx=fx+1=f«+ fleF.
(<) First note that,

fb>fanfb=f(aAnb)=f(an(a— b))=rfaAf(a— b)

Thus, by definition of —, we have f(a — b) < fa — fb, and similarly,
f(b—a)<fb— fa. Now, ifa<> b€ F,thena— b€ Fand b— acF.
Because F is closed under f, we then have f(a — b) € F and

f(b— a) € F. It then follows that fa— fb € F and fb — fa € F, and
hence fa +> fb € F. Hence, F is compatible with f. O

v
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Normalising

The following construction is due to Hasimoto (2001).
Definition

Let A be a Heyting algebra and let f: A” — A be a map. For each a € A,
define the set f<7(a) by

@) ={f(xt,. .., xn) & Fa,-- -5 yn) | (Vi < n) x; <> yi > a}.
For any set K of maps on A, let [K]: A — A be the partial operation
[Kla= A\UJ{F(a) | f € K}.

We say that [K] exists in A if it is defined for all a € A. If K = {f} we will
write [f] instead.
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Normalising

Lemma 2 (Hasimoto, 2001)

Let A be a Heyting algebra and let K be a set of operations on A. If [K]
exists, then [K] is a normal operator, and [[K]] = [K].

Definition
Let A be an expanded Heyting algebra and let M denote the set of
operations on A. Let [A] denote the algebra

(A;V, A, —, [M],0,1).

Theorem 3 (Hasimoto, 2001)

Let A be an expanded Heyting algebra and assume that [M] exists in A.
1. CFil([A]) C CFil(A).
2. A = [A] if and only if (Va € A) [M]a € CFg”(a).

v
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M.
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Proof.
For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y15+ -+ Xn, Yn € A.
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y1y, Xn, Yn € A. Assume that for each i < n we have x; <> y; € F.
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y1y -« -5 Xn, Yn € A. Assume that for each i < n we have x; <> y; € F. It

then follows that a:= A, x; <> y; € F.
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y1y, Xn, Yn € A. Assume that for each i < n we have x; <> y; € F. It

then follows that a := A, x; <> y; € F. We now have
f(x1,...,xn) > f(y1,...,yn) € F7(a),
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y1y, Xn, Yn € A. Assume that for each i < n we have x; <> y; € F. It
then follows that a := A, x; <> y; € F. We now have

f(xt,..y%n) & F(a,---,yn) € F7(a),

and so
[Mla < f(x1,...,xn) > F(yi,...,¥n)
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y1y, Xn, Yn € A. Assume that for each i < n we have x; <> y; € F. It
then follows that a := A, x; <> y; € F. We now have

f(xt,..y%n) & F(a,---,yn) € F7(a),

and so
[Mla < f(x1,...,xn) > F(yi,...,¥n)

Using the previous two lemmas, we have [M]a € F, and so
f(x1,...,xn) < f()1,...,¥n) € F,

as required.
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Proof.

For part (1), assume that F is compatible with [M]. We must show that it
is compatible with f for every f € M. So, let f € M be n-ary and let

X1, Y1y, Xn, Yn € A. Assume that for each i < n we have x; <> y; € F. It
then follows that a := A, x; <> y; € F. We now have

f(xt,..y%n) & F(a,---,yn) € F7(a),
and so
[Mla < f(x1,...,xn) > F(yi,...,¥n)

Using the previous two lemmas, we have [M]a € F, and so

f(x1,...,xn) < f(y1,-..,¥n) € F,
as required.
For part (2), the condition (Va € A) [M]a € CFg®(a) is equivalent to the
claim that every congruence-filter of A is closed under [M]. Part (2) then
holds after a brief explanation. O
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Getting a term

Lemma

Let A be an expanded Heyting algebra and assume [M] exists in A. If
there is a term t in the language of A such that tx = [M]x, then t is a
normal filter term on A.
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Getting a term

Lemma

Let A be an expanded Heyting algebra and assume [M] exists in A. If
there is a term t in the language of A such that tx = [M|]x, then t is a
normal filter term on A.

Proof.
Suppose we have such a term and let F be a filter of A. It is required to
show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [A]. Then by
Theorem 3, F is a congruence-filter of A.
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Getting a term

Lemma

Let A be an expanded Heyting algebra and assume [M] exists in A. If
there is a term t in the language of A such that tx = [M|]x, then t is a
normal filter term on A. )

Proof.
Suppose we have such a term and let F be a filter of A. It is required to
show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [A]. Then by
Theorem 3, F is a congruence-filter of A.

Conversely, let F be a congruence-filter of A and let x € F.
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Getting a term

Lemma

Let A be an expanded Heyting algebra and assume [M] exists in A. If
there is a term t in the language of A such that tx = [M|]x, then t is a
normal filter term on A.

Proof.
Suppose we have such a term and let F be a filter of A. It is required to
show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [A]. Then by
Theorem 3, F is a congruence-filter of A.

Conversely, let F be a congruence-filter of A and let x € F. Since
x <> 1 = x, we have (x,1) € (F), and so (tx, t1) € §(F).
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Getting a term

Lemma

Let A be an expanded Heyting algebra and assume [M] exists in A. If
there is a term t in the language of A such that tx = [M|]x, then t is a
normal filter term on A.

Proof.

Suppose we have such a term and let F be a filter of A. It is required to
show that F is a congruence-filter if and only if F is closed under t.

If F is closed under t, then it is a congruence-filter of [A]. Then by
Theorem 3, F is a congruence-filter of A.

Conversely, let F be a congruence-filter of A and let x € F. Since
x <> 1 = x, we have (x,1) € §(F), and so (tx, t1) € 6(F). But since
[M]1 =1, we have t1 =1, and so (tx,1) € 6(F).
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If F is closed under t, then it is a congruence-filter of [A]. Then by
Theorem 3, F is a congruence-filter of A.

Conversely, let F be a congruence-filter of A and let x € F. Since
x <> 1 = x, we have (x,1) € §(F), and so (tx, t1) € 6(F). But since
[M]1 =1, we have t1 =1, and so (tx,1) € 6(F). Hence, tx € F. O

Although nice, Hasimoto's construction does not have to produce a term

function on A, even when it exists.
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Some existence conditions

Definition
Let A be a Heyting algebra and let f: A” — A be a map. For each k < n,
let fk: A — A denote the unary map given by

fx = £(0,...,0,x,0,...,0),

where x is in the k-th position. We will call f an operator if:
Lf(c.ooxAy,...)="F(..,x,...)Af(...,y,...), and,
2. f(...,1,...)=1.
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Some existence conditions

Definition
Let A be a Heyting algebra and let f: A” — A be a map. For each k < n,
let f¥: A — A denote the unary map given by

fx = £(0,...,0,x,0,...,0),

where x is in the k-th position. We will call f an operator if:
Lf(c.ooxAy,...)="F(..,x,...)Af(...,y,...), and,
2. f(...,1,...)=1.

Lemma (Hasimoto, 2001)
Let A be a Heyting algebra and let f: A" — A be an operator. Then [f]

exists, and
[f]x = /\ FR)x.

k<n

v
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Some existence conditions

Definition
Let A be a Heyting algebra and let f: A” — A be a map. We will call f
an anti-operator if:

Lf(c.oyxAy,...)="F(..,x,...)VFf(...,y,...), and,

2. f(...,1,...)=0.

Lemma

Let A be a Heyting algebra and let f be an anti-operator. Then [f] exists,

and
[f]x = /\ —~f(R)x.

k<n
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma J

The map ~ is an anti-operator.
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma
The map ~ is an anti-operator.

Proof.
Since1vV0 =1, we have 0 > ~1, so ~1 =0.
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma
The map ~ is an anti-operator.

Proof.
Since 1V 0 =1, we have 0 > ~1, so ~1 = 0. Now, since x A y < x, we
have

(XAy)V~(xAy) < xV~(xAy),
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Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma
The map ~ is an anti-operator.

Proof.
Since 1V 0 =1, we have 0 > ~1, so ~1 = 0. Now, since x A y < x, we
have

(XAy)V~(xAy) < xV~(xAy),

and then xV ~(xAy) = 1.
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma
The map ~ is an anti-operator.

Proof.
Since 1V 0 =1, we have 0 > ~1, so ~1 = 0. Now, since x A y < x, we
have

(XAY)V~(xAy) < xV~(xAy),

and then xV ~(xAy) =1. So ~(x Ay) > ~x, and similarly for y. Hence,
~(XAy) = ~xVoy.
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma
The map ~ is an anti-operator.

Proof.
Since 1V 0 =1, we have 0 > ~1, so ~1 = 0. Now, since x A y < x, we
have

(XAY)V~(xAy) < xV~(xAy),

and then xV ~(xAy) =1. So ~(x Ay) > ~x, and similarly for y. Hence,
~(x Ay) = ~xV ~y. On the other hand (using distributivity) we have

(XAY)V(~xVey)=(xVeaxVey)A(yVexVey)=1,
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An example

Recall that a unary operation ~ is a dual pseudocomplement operation if
it satisfies the equivalence xVy =1 <= y > ~x.

Lemma
The map ~ is an anti-operator.

Proof.
Since 1V 0 =1, we have 0 > ~1, so ~1 = 0. Now, since x A y < x, we
have

(XAY)V~(xAy) < xV~(xAy),

and then xV ~(xAy) =1. So ~(x Ay) > ~x, and similarly for y. Hence,

~(x Ay) = ~xV ~y. On the other hand (using distributivity) we have
(XAY)V(~xVey)=(xVeaxVey)A(yVexVey)=1,

and so ~x V ~y = ~(x Ay). O

v
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An example

Corollary

Let A be a Heyting algebra and let ~ be a dual pseudocomplement
operation on A. Then [~] = —~.
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An example

Corollary

Let A be a Heyting algebra and let ~ be a dual pseudocomplement
operation on A. Then [~] = —~.

Corollary (Sankappanavar, 1985)

Let A be an H"-algebra. Then =~ is a congruence-filter term on A.

We also saw

Theorem (Kohler, 1980)

Let A be a double Heyting algebra and F a filter of A. Then 6(F) is a
congruence on A if and only if F is closed under —~.

We will obtain this result as well by showing that [~] = —~.
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Double Heyting algebras

Proof that [~] = —~.

By definition, we have [~]a = A = (a), where

=) ={(x1 = x2) & (y1 = y2) | xi & yi > a}.
We will show that
1. =~a e =“(a), and

2. x = —~a, for all x € =7(a)
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Double Heyting algebras

Proof that [~] = —~.
By definition, we have [~]a = A = (a), where
=7(a) ={0a =x) < (1 = y2) | 5 ¢ yi > a}.

We will show that
1. =~a e =“(a), and
2. x = —~a, for all x € =7(a)

(1) Sincel1<»1=1>aand a+« 1=a, it follows that
(1-a)« (1+1)e ="(a)

Butl=1=0and1=a=~a, so~a<« 0=-~ac=(a). O
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Proof that [~] = —~.
(2) Note that x <> y > zifand only if x Az=y A z.
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Proof that [~] = —~.

(2) Note that x <> y > z if and only if x A z =y A z. So we will prove
that, if x; <> yi > a, then (x1 = x2) A =~a = (y1 = y2) A =~a.
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Proof that [+] = —~.
(2) Note that x <+ y > z if and only if x Az =y A z. So we will prove
that, if x; <> yi > a, then (x; = x2) A =~a = (y1 = y2) A 7~a. We have,
Xi<ryiza — xiNa=yiAa
= (xiNa)V~a=(yiNa)V ~a
— X; V~a=y;Vr~a.

The equation x V (y = z) = x V [(y V x) = (z V x)] holds in all double
Heyting algebras. So,

~a\V (X1 = X2) =n~aV [(Xl V Na) (X2 vV Na)]
=~aV[(y1V~a)=(y2V~a)l
=~aV(y = y2)

Taking a meet with =~a will finish the job. O
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