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Compass and straightedge

Given a pair of existing points, the following may be constructed:

1. the line through any two different existing points,
2. the circle with center at one point and through another point,
3. the point which is the intersection of two lines
4. the points which are on the intersection of a line and circle
5. the points which are on the intersection of two circles

Item 3 may have 0 or 1 solutions; items 4 and 5 may have 0, 1 or 2.
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Compass and straightedge

Definition
A real number x is constructible if |x | is the distance between two
points constructed as above. An angle θ is constructible if cos(θ) is a
constructible real number. Let C denote the set of constructible reals.

Theorem
C is a subfield of R and is closed under x 7→

√
|x |.

Proof.
Standard constructions

In particular, a quadratic with constructible coefficients and real
solutions has constructible solutions.
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A terrible proof of angle bisection

Let θ = arccos(a) be given; we aim to construct θ/2; i.e., the length
cos(θ/2) = cos(arccos(a)/2).

Using the double angle formula,

cos(θ) = 2 cos2(θ/2)− 1

=⇒ cos(θ/2) = ±
√

1 + cos(θ)

2

=⇒ cos(arccos(a)/2) = ±
√

1 + a
2

Thus, assuming constructibility of a ensures constructibility of
cos(arccos(a)/2).
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Compass and straightedge

The Ancient Greeks were interested in several geometric problems,
including but not limited to:

I squaring the circle,
I doubling the cube,
I trisecting the angle.

These are all now known impossible to solve in general by compass
and straightedge constructions.

For a constructible number x :

I Squaring the circle amounts to constructing x ·
√
π.

I Doubling the cube amounts to constructing x · 3
√

2.
I Trisecting the angle amounts to constructing cos(arccos(x)/3).
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Impossible constructions

Theorem
A real number x is constructible if and only if there is a chain of
algebraic field extensions

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

where x ∈ Kn and [Kj+1 : Kj ] = 2, for each 0 6 j < n.

It follows that:
I if x ∈ C, then x is algebraic;
I if x ∈ C, then the minimal polynomial of x (in Q) has degree 2n.

If a ∈ Q but 3
√

a /∈ Q, the minimal polynomial of 3
√

a is x3 − a. Thus
cube roots are not constructible (unless 3

√
a is rational).

C. J. Taylor Constructible Numbers and Origami 6 / 18



Impossible constructions

Theorem
A real number x is constructible if and only if there is a chain of
algebraic field extensions

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

where x ∈ Kn and [Kj+1 : Kj ] = 2, for each 0 6 j < n.

It follows that:
I if x ∈ C, then x is algebraic;
I if x ∈ C, then the minimal polynomial of x (in Q) has degree 2n.

If a ∈ Q but 3
√

a /∈ Q, the minimal polynomial of 3
√

a is x3 − a. Thus
cube roots are not constructible (unless 3

√
a is rational).

C. J. Taylor Constructible Numbers and Origami 6 / 18



Impossible constructions

Theorem
A real number x is constructible if and only if there is a chain of
algebraic field extensions

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

where x ∈ Kn and [Kj+1 : Kj ] = 2, for each 0 6 j < n.

It follows that:
I if x ∈ C, then x is algebraic;
I if x ∈ C, then the minimal polynomial of x (in Q) has degree 2n.

If a ∈ Q but 3
√

a /∈ Q, the minimal polynomial of 3
√

a is x3 − a. Thus
cube roots are not constructible (unless 3

√
a is rational).

C. J. Taylor Constructible Numbers and Origami 6 / 18



Margherita Piazzola Beloch (1879–1976, right)

Her main scientific interest were algebraic geometry, algebraic
topology and photogrammetry. After her thesis she worked on
classification of algebraic surfaces studying the configurations of lines
that could lie on surfaces. The next step was to study rational curves
lying on surfaces and in this framework Beloch obtained the following
important result: “Hyperelleptic surfaces of rank 2 are characterised by
having 16 rational curves.” — Wikipedia entry

C. J. Taylor Constructible Numbers and Origami 7 / 18



The Beloch Fold

In 1936, Beloch showed that origami was suitable for doubling the
cube by utilising what is now called the Beloch fold.

Given two points P1,P2 and two lines `1, `2 suitably positioned, you
can create a fold that takes P1 onto `1 and P2 onto `2.
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The Beloch Fold
The cube root construction assumes the existence of two points,
P1 = (−r ,0) and P2 = (0,1).

Take the line `2 given by y = −1 and `1 given by x = r . Perform the
Beloch fold, folding P2 onto `2 and P1 onto `1, as shown.

P1

P2

`1

`2

Claim: the x-intercept of the fold is 3
√

r .

This can be proved geometrically, but we will take a different approach.
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Folding

Consider the action of just folding a point P onto a line L.

It seems that folding a point onto a line amounts to constructing a
tangent line of a given parabola.

Consequently, finding a solution for the Beloch fold amounts to finding
a tangent line common to two parabolas.
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Parabolas

Given focus (f1, f2) and directrix ax + by + c = 0, the equation for the
associated parabola is

(ax + by + c)2

a2 + b2 = (x − f1)2 + (y − f2)2

With significant algebraic hassle, one can find the set of equations
defining the common tangent to two parabolas.

Fact
Any two conic sections have at most four tangent lines in common.

For parabolas, one of these is the tangent at infinity. Thus, in general,
there are at most three solutions for the Beloch fold.
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Parabolas
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Cube roots
We want a common tangent of the two parabolas p1 and p2, where the
equations are, respectively,

x = −y2

4r
, y =

x2

4

Via algebraic tedium:

At a point (−b2

4r ,b) on p1, the tangent line has equation x = −by
2r + b2

4r .

At a point (a, a2

4 ) on p2, the tangent line has equation y = ax
2 −

a2

4 .

These lines are the same if

−2r
b

=
a
2

and
b
2
= −a2

4

Solving gives a = 2r
1
3 and b = −2r

2
3 ; then the common tangent has

equation y = r
1
3 x − r

2
3 . Then y = 0 =⇒ x = 3

√
r .
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Trisecting the angle
Now, given an angle CAB as shown below, we can trisect it as follows:

B

C

A

P P ′

Q Q′

P

A

I Fold a line PP ′ perpendicular to AB.
I Fold AB onto PP ′; call this fold QQ′.
I Fold P onto AC and A onto QQ′.
I Fold this new line onto itself such that A is a fixed point.
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Trisecting the angle
Nicked from Wikipedia:
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Axioms of origami

1. Given two distinct points P1 and P2, construct the line that passes
through both of them.

2. Given two distinct points P1 and P2, construct the line that places
P1 onto P2.

3. Given two lines `1 and `2, construct the line that places `1 onto `2.
4. Given a point P1 and a line `1, construct the line perpendicular to

`1 that passes through P1.
5. Given two points P1,P2 and a line `1, construct a line that places

P1 onto L1 and passes through P2

6. (The Beloch Fold) Given two points P1,P2 and two lines `1, `2,
construct a line that takes P1 onto `1 and P2 onto `2.

7. Given a point P and two lines `1 and `2, construct a line that
places P onto `1 and is perpendicular to `2.

These axioms are known as the Huzita-Hatori axioms.
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Constructibility

A point in origami geometry is the intersection of two lines.

Definition
A real number x is origami-constructible if |x | is the distance between
two points constructed using the axioms on the previous slide.

Denote by O the set of origami-constructible numbers.

Theorem
Axioms 1–5 are essentially the same as the compass and straightedge
axioms.

Corollary
O is a field; moreover, C is a subfield of O.
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Constructibility

Theorem
A real number x is origami-constructible if and only if there is a chain
of algebraic field extensions

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

where x ∈ Kn and [Kj+1 : Kj ] ∈ {2,3}, for each 0 6 j < n.

The bulk of the proof amounts to showing that the Beloch fold is
equivalent to solving a cubic equation with origami-constructible
coefficients.
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