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Recap

Last time Tomasz spoke of computable functions and computable sets.

> A set is computably enumerable if some algorithmic procedure
can list its elements one-by-one.

> A set is computable if both it and its complement are computably
enumerable.

To make this precise, a model of computation must be chosen.
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Overview

Today'’s talk (5.1-5.7):

» The arithmetical hierarchy

» Smullyan’s elementary formal systems (EFS)
» Turing machines and universal machines

» Implementing Peano arithmetic in an EFS

» Building up to £9 formulas
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Today'’s talk (5.1-5.7):

» The arithmetical hierarchy

» Smullyan’s elementary formal systems (EFS)
» Turing machines and universal machines

» Implementing Peano arithmetic in an EFS

» Building up to £9 formulas

Main result
Every x9 formula can be realised by an EFS. J

» Bonus content: Hilbert’s 10th problem
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Overview

Main result
Every £9 formula can be realised by an EFS. J

Not today’s talk (5.8-5.10):

> Arithmetising elementary formal systems: given an EFS, there is a
¥ ; formula realised by it.
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Main result
Every £9 formula can be realised by an EFS. J

Not today’s talk (5.8-5.10):
> Arithmetising elementary formal systems: given an EFS, there is a
¥ ; formula realised by it.

> Arithmetising computable enumeration: given a computably
enumerable set S, there is a computable function f whose range
is S
» Then f(0),f(1),f(2),... is a proper list of S that can be computed.
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Overview

Main result
Every £9 formula can be realised by an EFS. J

Not today’s talk (5.8-5.10):
> Arithmetising elementary formal systems: given an EFS, there is a
¥ ; formula realised by it.

> Arithmetising computable enumeration: given a computably
enumerable set S, there is a computable function f whose range
is S
» Then f(0),f(1),f(2),... is a proper list of S that can be computed.
» Arithmetising computable analysis: the definition of RCA,.
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The Arithmetical Heirarchy

Formulas can be classified depending on the level of alternation in
their quantifiers:

(Vx1)(3x2) (Vx3) (VX4 ) (3X5) (VX6) (X1, - - ., X6)

The formula above is N5 — the quantification is “5-fold” and it begins
with V.
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The formula above is N5 — the quantification is “5-fold” and it begins
with V.

Given a base case Y = [y, the arithmetical hierarchy is defined
inductively:
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The Arithmetical Heirarchy

Formulas can be classified depending on the level of alternation in
their quantifiers:

(Vx1)(3x2) (Vx3) (VX4 ) (3X5) (VX6) (X1, - - ., X6)

The formula above is N5 — the quantification is “5-fold” and it begins
with V.

Given a base case Y = [y, the arithmetical hierarchy is defined
inductively:

> if ) is Iy, then (E|X1 )(Eng) . (Ele) © is Zn+1
> if g is Tp, then (¥x)(¥x2) . .. (Vxk) @ iS My 1

Then close the classes under logical equivalence.

Intuition: X1 formulas can be verified by brute force. Iy formulas can
be falsified by brute force.
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The Arithmetical Heirarchy

Consider the following formulas (in the language of PA):

> x(y+2)=xy+z
> x°4+1=0
» x#1andxy =z
Note that these items are not quantified. Given specific values of

X, y,z, both LHS and RHS can be evaluated and truthhood can be
determined for those specific values.
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Consider the following formulas (in the language of PA):

> x(y+2)=xy+z
> x°4+1=0
» x#1andxy =z
Note that these items are not quantified. Given specific values of

X, y,z, both LHS and RHS can be evaluated and truthhood can be
determined for those specific values.

These are examples of o = Iy formulas. The idea is that they are at
least on a surface level decidable.
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The Arithmetical Heirarchy

Consider now the statement “x is prime”, or

> x#0and x #1and (Vy)(Vz) yz=x = (y =xo0rz=x)
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> x#0and x #1and (Vy)(Vz) yz=x = (y =xo0rz=X)
Despite the quantifiers, primality of x is decidable’ — the factors are
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formula whose only quantification is bounded is classified as both Iy
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The Arithmetical Heirarchy

Consider now the statement “x is prime”, or
> x#0and x #1and (Vy)(Vz) yz=x = (y =xo0rz=X)

Despite the quantifiers, primality of x is decidable’ — the factors are
bounded above by x, so there is a finite search space.

Both (Vx < y) and (3x < y) are called bounded quantifiers, and a
formula whose only quantification is bounded is classified as both Iy
and X.

Earlier in the book Stillwell defines ¥ and Ny as the set of
quantifier-free formulas and then later redefines them in terms of
bounded quantifiers.

Whichever definition is chosen, ¥; and I1; are unchanged for i > 0.

"polynomial, in fact, by the AKS primality test (2002)



Smullyan’s elementary formal systems

An elementary formal system is a collection of the following items:

a finite alphabet A= {a, b, c, ... } not containing =,

a set of variables V = {x, y, z, ... } disjoint from A,

a set of set variables S = {P, Q, R, ... } disjoint from AU V,
axioms of the form Pw, with P € Sand w € (AU V)*,

axioms of the form Py xqy = PoXxo = ... = Ppx,, Wwhere each P;is a
set variable and each x; is a word in (AU V)*.

ok b=
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Smullyan’s elementary formal systems

An elementary formal system is a collection of the following items:

a finite alphabet A= {a, b, c, ... } not containing =,

a set of variables V = {x, y, z, ... } disjoint from A,

a set of set variables S = {P, Q, R, ... } disjoint from AU V,
axioms of the form Pw, with P € Sand w € (AU V)*,

axioms of the form Py xqy = PoXxo = ... = Ppx,, Wwhere each P;is a
set variable and each x; is a word in (AU V)*.

ok b=

Note:
» Everything is finite.
» Arbitrary words in A* will be substituted for variables.
> Pix; = ... = Ppxoisinterpreted as (Pixy A+ A Pp_1Xn_1) = Ph.
» There are no brackets.
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Smullyan’s elementary formal systems

An EFS generating the set E of strings of the form aa. .. a of even
positive length is

Eaa

Ex = Exaa
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An EFS generating the set E of strings of the form aa. .. a of even
positive length is

Eaa
Ex = Exaa

For any given EFS, the rules of inference are as follows:

» For any axiom, substituting an arbitrary word for each variable in
that axiom gives a theorem.

» If Uand U = V are theorems, and U is not itself of the form
X = Y, then Vis a theorem.
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Smullyan’s elementary formal systems

An EFS generating the set E of strings of the form aa. .. a of even
positive length is

Eaa
Ex = Exaa

For any given EFS, the rules of inference are as follows:

» For any axiom, substituting an arbitrary word for each variable in
that axiom gives a theorem.

» If Uand U = V are theorems, and U is not itself of the form
X = Y, then Vis a theorem.

To justify the use of elementary formal systems we will refer to an
excerpt from the book.
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Smullyan’s elementary formal systems
An EFS generating the set P of non-empty palindromes on the
alphabet {a, b}:

Pa

Paa

Pb

Pbb

Px = Paxa

Px = Pbxb
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An EFS generating the set P of non-empty palindromes on the
alphabet {a, b}:

Pa

Paa

Pb

Pbb

Px = Paxa

Px = Pbxb

For relations, we assume the comma symbol is not in the alphabet,
add it, and then permit rules of the form Pxy, ..., xn = Qy1,..., Yn.
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Smullyan’s elementary formal systems

An EFS generating the set P of non-empty palindromes on the
alphabet {a, b}:

Pa
Paa
Pb
Pbb
Px = Paxa
Px = Pbxb
For relations, we assume the comma symbol is not in the alphabet,

add it, and then permit rules of the form Pxy, ..., xn = Qy1,..., Yn.
Suppose we amended the above EFS to include

Px = Py = Sx,y.

Then Sx, y is a theorem if and only if (x, y) is an ordered pair of
palindromes.
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Implementing PA

Stillwell says of base 1 numerals, “These base one or unary numerals
are simple and natural, but in some ways too simple to be convenient.”

C. J. Taylor Arithmetisation of computation 11/20



Implementing PA

Stillwell says of base 1 numerals, “These base one or unary numerals
are simple and natural, but in some ways too simple to be convenient.”

Instead, we utilise what Smullyan calls the dyadic system of numerals.
1=1

2=2
3=11
4=12
5= 21
6 =22
7 =111
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Implementing PA

Stillwell says of base 1 numerals, “These base one or unary numerals
are simple and natural, but in some ways too simple to be convenient.”

Instead, we utilise what Smullyan calls the dyadic system of numerals.
1=1

2=2
3=11
4=12
5= 21
6 =22
7 =111

In general, a positive integer n is represented by a string di . . . dbd;,
where
n=d'4+...+d-24d-1.
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Implementing PA

The goal now is to build an EFS for each of the basic relations of PA,

1. S(x) =y,
2. x+y=2
3. x-y=2
4. x <y,
5. x <y,
6. X#£y

For an EFS to encode the relation S(x) = y, we mean that for some
set variable P, the EFS proves Px, y if and only if S(x) = y.
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Implementing PA

The goal now is to build an EFS for each of the basic relations of PA,

1. 8(x) =y,
2. X+y=2z
3. x-y=2,
4. x <y,
5. x <y,
6. X#£y

For an EFS to encode the relation S(x) = y, we mean that for some
set variable P, the EFS proves Px, y if and only if S(x) = y.

Moreover, given a polynomial p with positive integer coefficients (and n
variables), we can represent the relation

y:p(x1)"'7xf7)
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EFS-generated sets

Definition

A set S (of words in some finite alphabet) is called EFS-generated if
there is an EFS that proves Sx if and only if x € S.

Proposition

If S and T are EFS-generated sets, then eachof SUT, SN T and
S x T are EFS-generated.

Corollary

Any Boolean combination of equality between polynomials is
EFS-generated.

In other words, quantifier-free formulas are EFS-generated.
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Projections
Definition
If W(x1,..., Xk ¥1,---,Ye) is a property of (k + ¢)-tuples, then the

property 3xq ... 3Ixe W(xq,..., Xk, ¥1,- .., Ye) iS an existential
quantification of the property W, and the set

{, -y 3 AW, X Y, - Ye) )

is the corresponding projection of the set

{<X17"'axkay1a"'7.y€> : W(X1,---,Xka}’1a---,}’€)}

Proposition

If W is an EFS-generated set of (k + ¢)-tuples, then any projection of
W is EFS-generated.

It follows that if R(x,y) is EFS-generated, then so is (3x) R(x,y).



Bounded quantifiers

Recall the bounded quantifiers, (3x < y) and (Vx < y).
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Bounded quantifiers

Recall the bounded quantifiers, (3x < y) and (¥x < y).

The last part we need to prove is that bounded quantification of an
EFS-generated relation is also EFS-generated.
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Bounded quantifiers

Recall the bounded quantifiers, (3x < y) and (Vx < y).

The last part we need to prove is that bounded quantification of an
EFS-generated relation is also EFS-generated.

Bounded existential formulas are no problem: (3y < z) R(y, X) is
equivalent to

(3y) y < zAR(y,X).

We have seen how to represent existential quantifiers and Boolean
combinations.
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Bounded quantifiers

Bounded universal quantification is a little more fiddly. To represent
v(z,X) = (Vy < z) R(y,X), note that

> ©(1,X) is vacuously true,
> [w=5(2) Ap(z,X) AR(z,X)] = p(w,X)
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Bounded quantifiers

Bounded universal quantification is a little more fiddly. To represent
o(z,x) = (Yy < 2) R(y,X), note that
> ©(1,X) is vacuously true,
> [w=5(2) Ap(z,X) AR(z,X)] = (W, X)
Thus, given an EFS generating R, we can introduce the axioms
pl,x
w=S5(z) = pz,Xx = Rz, X = pw,X
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Bounded quantifiers

Bounded universal quantification is a little more fiddly. To represent
v(z,X) = (Vy < z) R(y,X), note that

> ©(1,X) is vacuously true,
> [w=5(2) Ap(z,X) AR(z,X)] = (W, X)

Thus, given an EFS generating R, we can introduce the axioms

1, x
w=S5(z) = pz,Xx = Rz, X = pw,X
Corollary
All X4 relations are EFS-generated. J
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Hilbert’s tenth problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.
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quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

Equivalently,

Is there an algorithm to solve the general problem: given two
polynomials p and g with positive integer coefficients, is there a
positive integer solution to p(x1, ..., Xn) = q(X1,...,Xn)?
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Hilbert’s tenth problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

Equivalently,

Is there an algorithm to solve the general problem: given two
polynomials p and g with positive integer coefficients, is there a
positive integer solution to p(x1, ..., Xn) = q(X1,...,Xn)?

This is plainly seen to be a ¥ problem:

(3x1) -+~ (3xn) p(x) = q(x)
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Hilbert’s tenth problem

Definition
A set S of tuples of natural numbers is Diophantine if it can be defined
by

neS < 3xq3xe...3xc P(7,(x)) =0,

for some Diophantine polynomial P.

The formula defining a Diophantine set is clearly ¥ 1.
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Hilbert’s tenth problem

Definition
A set S of tuples of natural numbers is Diophantine if it can be defined
by

neS < 3xq3xe...3xc P(7,(x)) =0,

for some Diophantine polynomial P.

The formula defining a Diophantine set is clearly ¥ .

Example
Consider the quadratic ax?® — bx + c. Let

S={(ab,c) e N®|(3x € N) ax®> — bx + ¢ = 0}

Then S is Diophantine, and, for example, (1,2,1) € Sbut (1,4,1) ¢ S.
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Hilbert’s tenth problem

Remarkably, the converse is also true.

Theorem (Matiyasevich, Robinson, Davis, Putnam)
Every computably enumerable set is Diophantine. (Click here) J
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Hilbert’s tenth problem

Remarkably, the converse is also true.

Theorem (Matiyasevich, Robinson, Davis, Putnam)
Every computably enumerable set is Diophantine. (Click here) J

We have seen that ¥1 — computably enumerable; hence every %4
formula is equivalent to a Diophantine equation.

Corollary

If o is X1, then ¢ is equivalent to (3x1)(3x2) . .. (3xn) ¢, for some
quantifier-free 1.

In particular, primality of x can be expressed existentially.
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DIOPHANTINE REPRESENTATION OF THE SET OF PRIME NUMBERS
JAMES P. JONES, DAIHACHIRO SATO, HIDEO WADA anp DOUGLAS WIENS

1. Introduction. Martin Davis, Yuri Matijasevi¢, Hilary Putnam and Julia Robinson [4] [8] have
proven that every recursively enumerable set is Diophantine, and hence that the set of prime numbers
is Diophantine. From this, and work of Putnam [12], it follows that the set of prime numbers is
representable by a polynomial formula. In this article such a prime representing polynomial will be
exhibited in explicit form. We prove (in Section 2)

THEOREM 1. The set of prime numbers is identical with the set of positive values taken on by the
polynomial

() (k+2{1-[wz+h+j-qP-[(gk+2g +k +1)-(h+j)+h—z ~[2n+p+q+z-e]
=[16(k + 1 (k +2)-(n + 1P+1-£p [ (e+2)(a+1)+1-0 ~(@=y*+1-x7
—[16rty4a?- 1)+ 1-wP-[lla + (W= a) = 1)- (n +4dyY + 1= (x + cuf T ~[n + I+ v -y
~[(a*-1)P+1-mT-[ai+k+1=-1=if ~[p+ia-n-1)+bQ2an +2a=n*~2n-2)-m]
—lg+yla-p~1)+s(2ap +2a - p*-2p-2)~xJ —[z +pila - p)+ H2ap - p*- 1)~ pm]}

as the variables range over the nonnegative integers.

(1) is a polynomial of degree 25 in 26 variables, a, b, c,...,z. When nonnegative integers are
substituted for these variables, the positive values of (1) coincide exactly with the set of all prime
numbers 2,3,5,.... The polynomial (1) also takes on negative values, e.g., —76.
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