
Arithmetisation of computation

Christopher J. Taylor

C. J. Taylor Arithmetisation of computation 1 / 20



Recap

Last time Tomasz spoke of computable functions and computable sets.

I A set is computably enumerable if some algorithmic procedure
can list its elements one-by-one.

I A set is computable if both it and its complement are computably
enumerable.

To make this precise, a model of computation must be chosen.

C. J. Taylor Arithmetisation of computation 2 / 20



Overview

Today’s talk (5.1–5.7):

I The arithmetical hierarchy
I Smullyan’s elementary formal systems (EFS)
I Turing machines and universal machines
I Implementing Peano arithmetic in an EFS
I Building up to Σ0

1 formulas

Main result
Every Σ0

1 formula can be realised by an EFS.

I Bonus content: Hilbert’s 10th problem

C. J. Taylor Arithmetisation of computation 3 / 20



Overview

Today’s talk (5.1–5.7):

I The arithmetical hierarchy
I Smullyan’s elementary formal systems (EFS)
I Turing machines and universal machines
I Implementing Peano arithmetic in an EFS
I Building up to Σ0

1 formulas

Main result
Every Σ0

1 formula can be realised by an EFS.

I Bonus content: Hilbert’s 10th problem

C. J. Taylor Arithmetisation of computation 3 / 20



Overview

Today’s talk (5.1–5.7):

I The arithmetical hierarchy
I Smullyan’s elementary formal systems (EFS)
I Turing machines and universal machines
I Implementing Peano arithmetic in an EFS
I Building up to Σ0

1 formulas

Main result
Every Σ0

1 formula can be realised by an EFS.

I Bonus content: Hilbert’s 10th problem

C. J. Taylor Arithmetisation of computation 3 / 20



Overview

Main result
Every Σ0

1 formula can be realised by an EFS.

Not today’s talk (5.8–5.10):
I Arithmetising elementary formal systems: given an EFS, there is a

Σ1 formula realised by it.

I Arithmetising computable enumeration: given a computably
enumerable set S, there is a computable function f whose range
is S
I Then f (0), f (1), f (2), . . . is a proper list of S that can be computed.

I Arithmetising computable analysis: the definition of RCA0.

C. J. Taylor Arithmetisation of computation 4 / 20



Overview

Main result
Every Σ0

1 formula can be realised by an EFS.

Not today’s talk (5.8–5.10):
I Arithmetising elementary formal systems: given an EFS, there is a

Σ1 formula realised by it.
I Arithmetising computable enumeration: given a computably

enumerable set S, there is a computable function f whose range
is S
I Then f (0), f (1), f (2), . . . is a proper list of S that can be computed.

I Arithmetising computable analysis: the definition of RCA0.

C. J. Taylor Arithmetisation of computation 4 / 20



Overview

Main result
Every Σ0

1 formula can be realised by an EFS.

Not today’s talk (5.8–5.10):
I Arithmetising elementary formal systems: given an EFS, there is a

Σ1 formula realised by it.
I Arithmetising computable enumeration: given a computably

enumerable set S, there is a computable function f whose range
is S
I Then f (0), f (1), f (2), . . . is a proper list of S that can be computed.

I Arithmetising computable analysis: the definition of RCA0.

C. J. Taylor Arithmetisation of computation 4 / 20



The Arithmetical Heirarchy
Formulas can be classified depending on the level of alternation in
their quantifiers:

(∀x1)(∃x2)(∀x3)(∀x4)(∃x5)(∀x6) ϕ(x1, . . . , x6)

The formula above is Π5 – the quantification is “5-fold” and it begins
with ∀.

Given a base case Σ0 = Π0, the arithmetical hierarchy is defined
inductively:

I if ϕ is Πn, then (∃x1)(∃x2) . . . (∃xk ) ϕ is Σn+1

I if ϕ is Σn, then (∀x1)(∀x2) . . . (∀xk ) ϕ is Πn+1

Then close the classes under logical equivalence.

Intuition: Σ1 formulas can be verified by brute force. Π1 formulas can
be falsified by brute force.

C. J. Taylor Arithmetisation of computation 5 / 20



The Arithmetical Heirarchy
Formulas can be classified depending on the level of alternation in
their quantifiers:

(∀x1)(∃x2)(∀x3)(∀x4)(∃x5)(∀x6) ϕ(x1, . . . , x6)

The formula above is Π5 – the quantification is “5-fold” and it begins
with ∀.

Given a base case Σ0 = Π0, the arithmetical hierarchy is defined
inductively:

I if ϕ is Πn, then (∃x1)(∃x2) . . . (∃xk ) ϕ is Σn+1

I if ϕ is Σn, then (∀x1)(∀x2) . . . (∀xk ) ϕ is Πn+1

Then close the classes under logical equivalence.

Intuition: Σ1 formulas can be verified by brute force. Π1 formulas can
be falsified by brute force.

C. J. Taylor Arithmetisation of computation 5 / 20



The Arithmetical Heirarchy
Formulas can be classified depending on the level of alternation in
their quantifiers:

(∀x1)(∃x2)(∀x3)(∀x4)(∃x5)(∀x6) ϕ(x1, . . . , x6)

The formula above is Π5 – the quantification is “5-fold” and it begins
with ∀.

Given a base case Σ0 = Π0, the arithmetical hierarchy is defined
inductively:

I if ϕ is Πn, then (∃x1)(∃x2) . . . (∃xk ) ϕ is Σn+1

I if ϕ is Σn, then (∀x1)(∀x2) . . . (∀xk ) ϕ is Πn+1

Then close the classes under logical equivalence.

Intuition: Σ1 formulas can be verified by brute force. Π1 formulas can
be falsified by brute force.

C. J. Taylor Arithmetisation of computation 5 / 20



The Arithmetical Heirarchy
Formulas can be classified depending on the level of alternation in
their quantifiers:

(∀x1)(∃x2)(∀x3)(∀x4)(∃x5)(∀x6) ϕ(x1, . . . , x6)

The formula above is Π5 – the quantification is “5-fold” and it begins
with ∀.

Given a base case Σ0 = Π0, the arithmetical hierarchy is defined
inductively:

I if ϕ is Πn, then (∃x1)(∃x2) . . . (∃xk ) ϕ is Σn+1

I if ϕ is Σn, then (∀x1)(∀x2) . . . (∀xk ) ϕ is Πn+1

Then close the classes under logical equivalence.

Intuition: Σ1 formulas can be verified by brute force. Π1 formulas can
be falsified by brute force.

C. J. Taylor Arithmetisation of computation 5 / 20



The Arithmetical Heirarchy
Formulas can be classified depending on the level of alternation in
their quantifiers:

(∀x1)(∃x2)(∀x3)(∀x4)(∃x5)(∀x6) ϕ(x1, . . . , x6)

The formula above is Π5 – the quantification is “5-fold” and it begins
with ∀.

Given a base case Σ0 = Π0, the arithmetical hierarchy is defined
inductively:

I if ϕ is Πn, then (∃x1)(∃x2) . . . (∃xk ) ϕ is Σn+1

I if ϕ is Σn, then (∀x1)(∀x2) . . . (∀xk ) ϕ is Πn+1

Then close the classes under logical equivalence.

Intuition: Σ1 formulas can be verified by brute force. Π1 formulas can
be falsified by brute force.

C. J. Taylor Arithmetisation of computation 5 / 20



The Arithmetical Heirarchy

Consider the following formulas (in the language of PA):

I 1 + 3 = 3 + 1,
I x(y + z) = xy + z
I x2 + 1 = 0
I x 6= 1 and xy = z

Note that these items are not quantified. Given specific values of
x , y , z, both LHS and RHS can be evaluated and truthhood can be
determined for those specific values.

These are examples of Σ0 = Π0 formulas. The idea is that they are at
least on a surface level decidable.

C. J. Taylor Arithmetisation of computation 6 / 20



The Arithmetical Heirarchy

Consider the following formulas (in the language of PA):

I 1 + 3 = 3 + 1,
I x(y + z) = xy + z
I x2 + 1 = 0
I x 6= 1 and xy = z

Note that these items are not quantified. Given specific values of
x , y , z, both LHS and RHS can be evaluated and truthhood can be
determined for those specific values.

These are examples of Σ0 = Π0 formulas. The idea is that they are at
least on a surface level decidable.

C. J. Taylor Arithmetisation of computation 6 / 20



The Arithmetical Heirarchy

Consider now the statement “x is prime”, or

I x 6= 0 and x 6= 1 and (∀y)(∀z) yz = x =⇒ (y = x or z = x)

Despite the quantifiers, primality of x is decidable1 — the factors are
bounded above by x , so there is a finite search space.

Both (∀x < y) and (∃x < y) are called bounded quantifiers, and a
formula whose only quantification is bounded is classified as both Π0
and Σ0.

Earlier in the book Stillwell defines Σ0 and Π0 as the set of
quantifier-free formulas and then later redefines them in terms of
bounded quantifiers.

Whichever definition is chosen, Σi and Πi are unchanged for i > 0.

1polynomial, in fact, by the AKS primality test (2002)

C. J. Taylor Arithmetisation of computation 7 / 20



The Arithmetical Heirarchy

Consider now the statement “x is prime”, or

I x 6= 0 and x 6= 1 and (∀y)(∀z) yz = x =⇒ (y = x or z = x)

Despite the quantifiers, primality of x is decidable1 — the factors are
bounded above by x , so there is a finite search space.

Both (∀x < y) and (∃x < y) are called bounded quantifiers, and a
formula whose only quantification is bounded is classified as both Π0
and Σ0.

Earlier in the book Stillwell defines Σ0 and Π0 as the set of
quantifier-free formulas and then later redefines them in terms of
bounded quantifiers.

Whichever definition is chosen, Σi and Πi are unchanged for i > 0.

1polynomial, in fact, by the AKS primality test (2002)
C. J. Taylor Arithmetisation of computation 7 / 20



The Arithmetical Heirarchy

Consider now the statement “x is prime”, or

I x 6= 0 and x 6= 1 and (∀y)(∀z) yz = x =⇒ (y = x or z = x)

Despite the quantifiers, primality of x is decidable1 — the factors are
bounded above by x , so there is a finite search space.

Both (∀x < y) and (∃x < y) are called bounded quantifiers, and a
formula whose only quantification is bounded is classified as both Π0
and Σ0.

Earlier in the book Stillwell defines Σ0 and Π0 as the set of
quantifier-free formulas and then later redefines them in terms of
bounded quantifiers.

Whichever definition is chosen, Σi and Πi are unchanged for i > 0.

1polynomial, in fact, by the AKS primality test (2002)
C. J. Taylor Arithmetisation of computation 7 / 20



The Arithmetical Heirarchy

Consider now the statement “x is prime”, or

I x 6= 0 and x 6= 1 and (∀y)(∀z) yz = x =⇒ (y = x or z = x)

Despite the quantifiers, primality of x is decidable1 — the factors are
bounded above by x , so there is a finite search space.

Both (∀x < y) and (∃x < y) are called bounded quantifiers, and a
formula whose only quantification is bounded is classified as both Π0
and Σ0.

Earlier in the book Stillwell defines Σ0 and Π0 as the set of
quantifier-free formulas and then later redefines them in terms of
bounded quantifiers.

Whichever definition is chosen, Σi and Πi are unchanged for i > 0.

1polynomial, in fact, by the AKS primality test (2002)
C. J. Taylor Arithmetisation of computation 7 / 20



The Arithmetical Heirarchy

Consider now the statement “x is prime”, or

I x 6= 0 and x 6= 1 and (∀y)(∀z) yz = x =⇒ (y = x or z = x)

Despite the quantifiers, primality of x is decidable1 — the factors are
bounded above by x , so there is a finite search space.

Both (∀x < y) and (∃x < y) are called bounded quantifiers, and a
formula whose only quantification is bounded is classified as both Π0
and Σ0.

Earlier in the book Stillwell defines Σ0 and Π0 as the set of
quantifier-free formulas and then later redefines them in terms of
bounded quantifiers.

Whichever definition is chosen, Σi and Πi are unchanged for i > 0.

1polynomial, in fact, by the AKS primality test (2002)
C. J. Taylor Arithmetisation of computation 7 / 20



Smullyan’s elementary formal systems

An elementary formal system is a collection of the following items:

1. a finite alphabet A = {a,b, c, . . . } not containing⇒,
2. a set of variables V = {x , y , z, . . . } disjoint from A,
3. a set of set variables S = {P,Q,R, . . . } disjoint from A ∪ V ,
4. axioms of the form Pw , with P ∈ S and w ∈ (A ∪ V )∗,
5. axioms of the form P1x1 ⇒ P2x2 ⇒ . . .⇒ Pnxn, where each Pi is a

set variable and each xi is a word in (A ∪ V )∗.

Note:
I Everything is finite.
I Arbitrary words in A∗ will be substituted for variables.
I P1x1 ⇒ . . .⇒ Pnx2 is interpreted as (P1x1 ∧ · · · ∧Pn−1xn−1)⇒ Pn.
I There are no brackets.

C. J. Taylor Arithmetisation of computation 8 / 20



Smullyan’s elementary formal systems

An elementary formal system is a collection of the following items:

1. a finite alphabet A = {a,b, c, . . . } not containing⇒,
2. a set of variables V = {x , y , z, . . . } disjoint from A,
3. a set of set variables S = {P,Q,R, . . . } disjoint from A ∪ V ,
4. axioms of the form Pw , with P ∈ S and w ∈ (A ∪ V )∗,
5. axioms of the form P1x1 ⇒ P2x2 ⇒ . . .⇒ Pnxn, where each Pi is a

set variable and each xi is a word in (A ∪ V )∗.

Note:
I Everything is finite.
I Arbitrary words in A∗ will be substituted for variables.
I P1x1 ⇒ . . .⇒ Pnx2 is interpreted as (P1x1 ∧ · · · ∧Pn−1xn−1)⇒ Pn.
I There are no brackets.

C. J. Taylor Arithmetisation of computation 8 / 20



Smullyan’s elementary formal systems

An EFS generating the set E of strings of the form aa . . . a of even
positive length is

Eaa
Ex ⇒ Exaa

For any given EFS, the rules of inference are as follows:

I For any axiom, substituting an arbitrary word for each variable in
that axiom gives a theorem.

I If U and U ⇒ V are theorems, and U is not itself of the form
X ⇒ Y , then V is a theorem.

To justify the use of elementary formal systems we will refer to an
excerpt from the book.

C. J. Taylor Arithmetisation of computation 9 / 20



Smullyan’s elementary formal systems

An EFS generating the set E of strings of the form aa . . . a of even
positive length is

Eaa
Ex ⇒ Exaa

For any given EFS, the rules of inference are as follows:

I For any axiom, substituting an arbitrary word for each variable in
that axiom gives a theorem.

I If U and U ⇒ V are theorems, and U is not itself of the form
X ⇒ Y , then V is a theorem.

To justify the use of elementary formal systems we will refer to an
excerpt from the book.

C. J. Taylor Arithmetisation of computation 9 / 20



Smullyan’s elementary formal systems

An EFS generating the set E of strings of the form aa . . . a of even
positive length is

Eaa
Ex ⇒ Exaa

For any given EFS, the rules of inference are as follows:

I For any axiom, substituting an arbitrary word for each variable in
that axiom gives a theorem.

I If U and U ⇒ V are theorems, and U is not itself of the form
X ⇒ Y , then V is a theorem.

To justify the use of elementary formal systems we will refer to an
excerpt from the book.

C. J. Taylor Arithmetisation of computation 9 / 20



Smullyan’s elementary formal systems
An EFS generating the set P of non-empty palindromes on the
alphabet {a,b}:

Pa
Paa
Pb
Pbb
Px ⇒ Paxa
Px ⇒ Pbxb

For relations, we assume the comma symbol is not in the alphabet,
add it, and then permit rules of the form Px1, . . . , xn ⇒ Qy1, . . . , yn.
Suppose we amended the above EFS to include

Px ⇒ Py ⇒ Sx , y .

Then Sx , y is a theorem if and only if (x , y) is an ordered pair of
palindromes.

C. J. Taylor Arithmetisation of computation 10 / 20



Smullyan’s elementary formal systems
An EFS generating the set P of non-empty palindromes on the
alphabet {a,b}:

Pa
Paa
Pb
Pbb
Px ⇒ Paxa
Px ⇒ Pbxb

For relations, we assume the comma symbol is not in the alphabet,
add it, and then permit rules of the form Px1, . . . , xn ⇒ Qy1, . . . , yn.

Suppose we amended the above EFS to include

Px ⇒ Py ⇒ Sx , y .

Then Sx , y is a theorem if and only if (x , y) is an ordered pair of
palindromes.

C. J. Taylor Arithmetisation of computation 10 / 20



Smullyan’s elementary formal systems
An EFS generating the set P of non-empty palindromes on the
alphabet {a,b}:

Pa
Paa
Pb
Pbb
Px ⇒ Paxa
Px ⇒ Pbxb

For relations, we assume the comma symbol is not in the alphabet,
add it, and then permit rules of the form Px1, . . . , xn ⇒ Qy1, . . . , yn.
Suppose we amended the above EFS to include

Px ⇒ Py ⇒ Sx , y .

Then Sx , y is a theorem if and only if (x , y) is an ordered pair of
palindromes.

C. J. Taylor Arithmetisation of computation 10 / 20



Implementing PA
Stillwell says of base 1 numerals, “These base one or unary numerals
are simple and natural, but in some ways too simple to be convenient.”

Instead, we utilise what Smullyan calls the dyadic system of numerals.

1 = 1
2 = 2
3 = 11
4 = 12
5 = 21
6 = 22
7 = 111
. . .

In general, a positive integer n is represented by a string dk . . . d2d1,
where

n = dk2k−1 + · · ·+ d2 · 2 + d1 · 1.

C. J. Taylor Arithmetisation of computation 11 / 20



Implementing PA
Stillwell says of base 1 numerals, “These base one or unary numerals
are simple and natural, but in some ways too simple to be convenient.”

Instead, we utilise what Smullyan calls the dyadic system of numerals.

1 = 1
2 = 2
3 = 11
4 = 12
5 = 21
6 = 22
7 = 111
. . .

In general, a positive integer n is represented by a string dk . . . d2d1,
where

n = dk2k−1 + · · ·+ d2 · 2 + d1 · 1.

C. J. Taylor Arithmetisation of computation 11 / 20



Implementing PA
Stillwell says of base 1 numerals, “These base one or unary numerals
are simple and natural, but in some ways too simple to be convenient.”

Instead, we utilise what Smullyan calls the dyadic system of numerals.

1 = 1
2 = 2
3 = 11
4 = 12
5 = 21
6 = 22
7 = 111
. . .

In general, a positive integer n is represented by a string dk . . . d2d1,
where

n = dk2k−1 + · · ·+ d2 · 2 + d1 · 1.

C. J. Taylor Arithmetisation of computation 11 / 20



Implementing PA
The goal now is to build an EFS for each of the basic relations of PA,

1. S(x) = y ,
2. x + y = z,
3. x · y = z,
4. x < y ,
5. x 6 y ,
6. x 6= y

For an EFS to encode the relation S(x) = y , we mean that for some
set variable P, the EFS proves Px , y if and only if S(x) = y .

Moreover, given a polynomial p with positive integer coefficients (and n
variables), we can represent the relation

y = p(x1, . . . , xn)

C. J. Taylor Arithmetisation of computation 12 / 20



Implementing PA
The goal now is to build an EFS for each of the basic relations of PA,

1. S(x) = y ,
2. x + y = z,
3. x · y = z,
4. x < y ,
5. x 6 y ,
6. x 6= y

For an EFS to encode the relation S(x) = y , we mean that for some
set variable P, the EFS proves Px , y if and only if S(x) = y .

Moreover, given a polynomial p with positive integer coefficients (and n
variables), we can represent the relation

y = p(x1, . . . , xn)

C. J. Taylor Arithmetisation of computation 12 / 20



EFS-generated sets

Definition
A set S (of words in some finite alphabet) is called EFS-generated if
there is an EFS that proves Sx if and only if x ∈ S.

Proposition
If S and T are EFS-generated sets, then each of S ∪ T , S ∩ T and
S × T are EFS-generated.

Corollary
Any Boolean combination of equality between polynomials is
EFS-generated.

In other words, quantifier-free formulas are EFS-generated.

C. J. Taylor Arithmetisation of computation 13 / 20



Projections
Definition
If W (x1, . . . , xk , y1, . . . , y`) is a property of (k + `)-tuples, then the
property ∃x1 . . . ∃xkW (x1, . . . , xk , y1, . . . , y`) is an existential
quantification of the property W , and the set

{〈y1, . . . , y`〉 : ∃x1 . . . ∃xkW (x1, . . . , xk , y1, . . . , y`)}

is the corresponding projection of the set

{〈x1, . . . , xk , y1, . . . , y`〉 : W (x1, . . . , xk , y1, . . . , y`)}

Proposition
If W is an EFS-generated set of (k + `)-tuples, then any projection of
W is EFS-generated.

It follows that if R(x , y) is EFS-generated, then so is (∃x) R(x , y).

C. J. Taylor Arithmetisation of computation 14 / 20



Bounded quantifiers

Recall the bounded quantifiers, (∃x < y) and (∀x < y).

The last part we need to prove is that bounded quantification of an
EFS-generated relation is also EFS-generated.

Bounded existential formulas are no problem: (∃y < z) R(y , x) is
equivalent to

(∃y) y < z ∧ R(y , x).

We have seen how to represent existential quantifiers and Boolean
combinations.

C. J. Taylor Arithmetisation of computation 15 / 20



Bounded quantifiers

Recall the bounded quantifiers, (∃x < y) and (∀x < y).

The last part we need to prove is that bounded quantification of an
EFS-generated relation is also EFS-generated.

Bounded existential formulas are no problem: (∃y < z) R(y , x) is
equivalent to

(∃y) y < z ∧ R(y , x).

We have seen how to represent existential quantifiers and Boolean
combinations.

C. J. Taylor Arithmetisation of computation 15 / 20



Bounded quantifiers

Recall the bounded quantifiers, (∃x < y) and (∀x < y).

The last part we need to prove is that bounded quantification of an
EFS-generated relation is also EFS-generated.

Bounded existential formulas are no problem: (∃y < z) R(y , x) is
equivalent to

(∃y) y < z ∧ R(y , x).

We have seen how to represent existential quantifiers and Boolean
combinations.

C. J. Taylor Arithmetisation of computation 15 / 20



Bounded quantifiers

Bounded universal quantification is a little more fiddly. To represent
ϕ(z, x) = (∀y < z) R(y , x), note that

I ϕ(1, x) is vacuously true,
I [w = S(z) ∧ ϕ(z, x) ∧ R(z, x)]⇒ ϕ(w , x)

Thus, given an EFS generating R, we can introduce the axioms

ϕ1, x
w = S(z)⇒ ϕz, x ⇒ Rz, x ⇒ ϕw , x

Corollary
All Σ1 relations are EFS-generated.

C. J. Taylor Arithmetisation of computation 16 / 20



Bounded quantifiers

Bounded universal quantification is a little more fiddly. To represent
ϕ(z, x) = (∀y < z) R(y , x), note that

I ϕ(1, x) is vacuously true,
I [w = S(z) ∧ ϕ(z, x) ∧ R(z, x)]⇒ ϕ(w , x)

Thus, given an EFS generating R, we can introduce the axioms

ϕ1, x
w = S(z)⇒ ϕz, x ⇒ Rz, x ⇒ ϕw , x

Corollary
All Σ1 relations are EFS-generated.

C. J. Taylor Arithmetisation of computation 16 / 20



Bounded quantifiers

Bounded universal quantification is a little more fiddly. To represent
ϕ(z, x) = (∀y < z) R(y , x), note that

I ϕ(1, x) is vacuously true,
I [w = S(z) ∧ ϕ(z, x) ∧ R(z, x)]⇒ ϕ(w , x)

Thus, given an EFS generating R, we can introduce the axioms

ϕ1, x
w = S(z)⇒ ϕz, x ⇒ Rz, x ⇒ ϕw , x

Corollary
All Σ1 relations are EFS-generated.

C. J. Taylor Arithmetisation of computation 16 / 20



Hilbert’s tenth problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

Equivalently,

Is there an algorithm to solve the general problem: given two
polynomials p and q with positive integer coefficients, is there a
positive integer solution to p(x1, . . . , xn) = q(x1, . . . , xn)?

This is plainly seen to be a Σ1 problem:

(∃x1) · · · (∃xn) p(x) = q(x)

C. J. Taylor Arithmetisation of computation 17 / 20



Hilbert’s tenth problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

Equivalently,

Is there an algorithm to solve the general problem: given two
polynomials p and q with positive integer coefficients, is there a
positive integer solution to p(x1, . . . , xn) = q(x1, . . . , xn)?

This is plainly seen to be a Σ1 problem:

(∃x1) · · · (∃xn) p(x) = q(x)

C. J. Taylor Arithmetisation of computation 17 / 20



Hilbert’s tenth problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

Equivalently,

Is there an algorithm to solve the general problem: given two
polynomials p and q with positive integer coefficients, is there a
positive integer solution to p(x1, . . . , xn) = q(x1, . . . , xn)?

This is plainly seen to be a Σ1 problem:

(∃x1) · · · (∃xn) p(x) = q(x)

C. J. Taylor Arithmetisation of computation 17 / 20



Hilbert’s tenth problem

Definition
A set S of tuples of natural numbers is Diophantine if it can be defined
by

n ∈ S ⇐⇒ ∃x1∃x2 . . . ∃xk P(n, (x)) = 0,

for some Diophantine polynomial P.

The formula defining a Diophantine set is clearly Σ1.

Example

Consider the quadratic ax2 − bx + c. Let

S = {(a,b, c) ∈ N3 | (∃x ∈ N) ax2 − bx + c = 0}

Then S is Diophantine, and, for example, (1,2,1) ∈ S but (1,4,1) /∈ S.

C. J. Taylor Arithmetisation of computation 18 / 20



Hilbert’s tenth problem

Definition
A set S of tuples of natural numbers is Diophantine if it can be defined
by

n ∈ S ⇐⇒ ∃x1∃x2 . . . ∃xk P(n, (x)) = 0,

for some Diophantine polynomial P.

The formula defining a Diophantine set is clearly Σ1.

Example

Consider the quadratic ax2 − bx + c. Let

S = {(a,b, c) ∈ N3 | (∃x ∈ N) ax2 − bx + c = 0}

Then S is Diophantine, and, for example, (1,2,1) ∈ S but (1,4,1) /∈ S.

C. J. Taylor Arithmetisation of computation 18 / 20



Hilbert’s tenth problem

Remarkably, the converse is also true.

Theorem (Matiyasevich, Robinson, Davis, Putnam)
Every computably enumerable set is Diophantine. (Click here)

We have seen that Σ1 =⇒ computably enumerable; hence every Σ1
formula is equivalent to a Diophantine equation.

Corollary
If ϕ is Σ1, then ϕ is equivalent to (∃x1)(∃x2) . . . (∃xn) ψ, for some
quantifier-free ψ.

In particular, primality of x can be expressed existentially.

C. J. Taylor Arithmetisation of computation 19 / 20

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem#Recursively_enumerable_sets 


Hilbert’s tenth problem

Remarkably, the converse is also true.

Theorem (Matiyasevich, Robinson, Davis, Putnam)
Every computably enumerable set is Diophantine. (Click here)

We have seen that Σ1 =⇒ computably enumerable; hence every Σ1
formula is equivalent to a Diophantine equation.

Corollary
If ϕ is Σ1, then ϕ is equivalent to (∃x1)(∃x2) . . . (∃xn) ψ, for some
quantifier-free ψ.

In particular, primality of x can be expressed existentially.

C. J. Taylor Arithmetisation of computation 19 / 20

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem#Recursively_enumerable_sets 


Hilbert’s tenth problem

Remarkably, the converse is also true.

Theorem (Matiyasevich, Robinson, Davis, Putnam)
Every computably enumerable set is Diophantine. (Click here)

We have seen that Σ1 =⇒ computably enumerable; hence every Σ1
formula is equivalent to a Diophantine equation.

Corollary
If ϕ is Σ1, then ϕ is equivalent to (∃x1)(∃x2) . . . (∃xn) ψ, for some
quantifier-free ψ.

In particular, primality of x can be expressed existentially.

C. J. Taylor Arithmetisation of computation 19 / 20

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem#Recursively_enumerable_sets 


Hilbert’s tenth problem

Remarkably, the converse is also true.

Theorem (Matiyasevich, Robinson, Davis, Putnam)
Every computably enumerable set is Diophantine. (Click here)

We have seen that Σ1 =⇒ computably enumerable; hence every Σ1
formula is equivalent to a Diophantine equation.

Corollary
If ϕ is Σ1, then ϕ is equivalent to (∃x1)(∃x2) . . . (∃xn) ψ, for some
quantifier-free ψ.

In particular, primality of x can be expressed existentially.

C. J. Taylor Arithmetisation of computation 19 / 20

https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem#Recursively_enumerable_sets 


C. J. Taylor Arithmetisation of computation 20 / 20


