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I In Chapter 10 of The Omnibus, it is proved that the envelope of
the normal lines is exactly the curve traced out by the centers of
curvature.

I It is also noted that the cusps appearing in the evolute is not a
coincidence

Theorem (Four-vertex theorem)
The curvature function of a simple, closed, smooth plane curve has at
least four local extrema. Specifically, it has at least two local minima
and at least two local maxima.

Except for a few degenerate cases (such as circles), the extrema
correspond to cusps on the evolute. For more, see Chapter 10 of The
Omnibus.
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Some preliminaries

We will consider algebraic curves, i.e., curves of the form

F = {(x , y) ∈ R2 | f (x , y) = 0},

where f ∈ R[x , y ].

Generally,

f (x , y) = a + b0x + b1y + c0x2 + c1xy + c2x2 + . . .

Assume that the origin is a point on the curve, i.e., f (0,0) = 0, so that
a = 0. Then, for there to be a cusp at the origin, it is necessary, but not
sufficient, for the two partial derivatives to be 0, i.e.,

∂f
∂x

(0,0) =
∂f
∂y

(0,0) = 0.

Thus, if there is a cusp at the origin, we have a = b0 = b1 = 0.
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The “definition” of a cusp

Let f (x , y) be a polynomial of the following form:

f (x , y) = c0x2 + c1xy + c2y2 + d0x3 + d1x2y + d2xy2 + d3y3 + . . .

Some sources define a cusp in terms of the coefficients.

Definition
Let F be an algebraic curve defined by a polynomial f as above. If

I at least one of c0, c1, c2 is non-zero,
I at least one of d0,d1,d2,d3 is non-zero, and
I there is one real solution in m of multiplicity 2 to the polynomial

c0 + c1m + c2m2,

then somehow there is a cusp at the origin.
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Consider the semicubic parabola, given by the roots of

f (x , y) = y2 − x3.

We have a = b0 = b1 = c0 = c1 = 0, but c2 = 1 and d0 = −1. The
polynomial

c0 + c1m + c2m2 = m2

has a double root m = 0, so there is a cusp at the origin.
You may also observe from earlier that the slope of both tangents in
the diagram from earlier approaches 0 as we approach the cusp.
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Let’s rotate the semicubical parabola 30 degrees anticlockwise and
see what happens.

The slope of the tangents now approaches a value of tan 30◦ =
√

3
3 .
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To rotate the curve about an angle of θ, use the following change of
variables:

(x , y) 7→ (x cos θ + y sin θ, y cos θ − x sin θ)

Changing the variables in x3 − y2 gives

(x cos θ + y sin θ)3 − (y cos θ − x sin θ)2

In that case, expanding gives a = b0 = b1 = 0, and at least one of the
di ’s is non-zero.
Moreover, c0 = sin2 θ, c1 = −2 sin θ cos θ, c2 = cos2 θ.
So the polynomial of interest is

m2 cos2 θ − 2m sin θ cos θ + sin2 θ,

which has a double root m = tan θ provided that cos θ 6= 0.
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Somehow, the solution m is the “tangent” at the cusp.
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Another classic example of a cusp is in the cardioid, defined by the
polar equation

r(θ) = 2(1− cos θ).

Substituting x
r for cos θ and

√
x2 + y2 for r results in the implicit

representation

f (x , y) = (x2 + y2)2 + 4x(x2 + y2)− 4y2 = 0
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Expanding the cardioid polynomial, we get

f (x , y) = −4y2 + 4x3 + 4xy2 + x4 + 2x2y2 + y4

In this case, a = b0 = b1 = c0 = c1 = d2 = d3 = 0, but c2 = −4 and
d1 = 4.

So the “tangent” is given by the solution to

c2m2 = −4m2 = 0,

which clearly has a double root m = 0.
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More cusps
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The curve that was just traced out is called the cycloid.

It is
parametrised by

x = r(t − sin t)
y = r(1− cos t)

Proposition
The cycloid is not an algebraic curve.
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Video: a bike with “triangular” wheels

Video: drilling a square hole

Fun fact: the solution set of the following degree-8 polynomial also has
constant width:

(x2 + y2)4 − 45(x2 + y2)3 − 41283(x2 + y2)2 + 7950960(x2 + y2)

+ 16(x2 − 3y2)3 + 48(x2 + y2)(x2 − 3y2)2

+ x(x2 − 3y2)[16(x2 + y2)2 − 5544(x2 + y2) + 266382]− 7203

Rabinowitz, Stanley (1997). A Polynomial Curve of Constant Width. Missouri Journal of Mathematical Sciences. 9, pp. 23–27.

Video: a bike with square wheels
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Wheels

Consider an arbitrary parametric equation for a road, f (t) = (x(t), y(t)).

Note that y(t) < 0, x(0) = 0, and x(t) will be increasing.
We want to find a wheel that rolls smoothly on the road and whose axis
traces the x-axis.

Hall, Leon; Wagon, Stan (1992). Roads and Wheels. Mathematics Magazine. 65(5), pp 283–301.
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The wheel will be described by a polar function r(θ), and θ = θ(t)
describes the rotation of the wheel at time t .

The wheel will be found by solving for

I The initial state: θ(0) = −π
2 .

I The radius condition: r(θ(t)) = −y(t).
I The rolling condition:

∫ t

0

√(
dx
dt

)2

+

(
dy
dt

)2

dt =
∫ θ(t)

−π
2

√
r(θ)2 +

(
dr
dθ

)2

dθ.
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First differentiating the radius condition, r(θ(t)) = −y(t), gives

dr
dθ

dθ
dt

= −dy
dt
.

Now taking the rolling condition,

∫ t

0

√(
dx
dt

)2

+

(
dy
dt

)2

dt =
∫ θ(t)

−π
2

√
r(θ)2 +

(
dr
dθ

)2

dθ,

differentiating both sides with respect to t

and then squaring gives

=

(
dθ
dt

)2

r(θ)2 +

(
dy
dt

)2
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So, we have (
dx
dt

)2

=

(
dθ
dt

)2

r(θ)2,

and since everything is positive,

dθ
dt

=
dx
dt
· 1

r(θ)
= −dx

dt
· 1

y(t)

If x(t) = t , then
dθ
dt

= − 1
y(t)

If θ(t) is invertible to t(θ), then the wheel is given by

r(θ) = −y(t(θ)).
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This can also solve the problem: given a wheel, what is the road?

Assume that x(t) = t , and then consider r(θ) = − csc θ; a straight line.
Solving

dθ
dx

=
1

r(θ)
= − sin θ

eventually gives
θ(x) = −2 arctan e−x ,

and then plugging it into y(x) = −r(θ(x)) gives

y(x) = csc(−2 arctan e−x) = [...] = − cosh x
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