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» In Chapter 10 of The Omnibus, it is proved that the envelope of
the normal lines is exactly the curve traced out by the centers of
curvature.
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» In Chapter 10 of The Omnibus, it is proved that the envelope of
the normal lines is exactly the curve traced out by the centers of
curvature.

» |t is also noted that the cusps appearing in the evolute is not a
coincidence
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» In Chapter 10 of The Omnibus, it is proved that the envelope of
the normal lines is exactly the curve traced out by the centers of
curvature.

» |t is also noted that the cusps appearing in the evolute is not a
coincidence

Theorem (Four-vertex theorem)

The curvature function of a simple, closed, smooth plane curve has at
least four local extrema. Specifically, it has at least two local minima
and at least two local maxima.

C. J. Taylor Lecture 9: Cusps May 2, 2018 9/26



» In Chapter 10 of The Omnibus, it is proved that the envelope of
the normal lines is exactly the curve traced out by the centers of
curvature.

» |t is also noted that the cusps appearing in the evolute is not a
coincidence

Theorem (Four-vertex theorem)

The curvature function of a simple, closed, smooth plane curve has at
least four local extrema. Specifically, it has at least two local minima
and at least two local maxima.

Except for a few degenerate cases (such as circles), the extrema
correspond to cusps on the evolute. For more, see Chapter 10 of The
Omnibus.
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Some preliminaries

We will consider algebraic curves, i.e., curves of the form
F={(x,y) eR?| f(x,y) =0},

where f € R[x, y|.
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Some preliminaries
We will consider algebraic curves, i.e., curves of the form

F={(x,y) e R? | f(x,y) =0},

where f € R[x, y|.
Generally,

f(x,y) = @+ box + b1y + CoX? + C1Xy + CoX® + ...
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Some preliminaries
We will consider algebraic curves, i.e., curves of the form

F = {(X,y) ERZ ’ f(X7.y) =0}7

where f € R[x, y|.
Generally,

f(x,y) = @+ box + b1y + CoX? + C1Xy + CoX® + ...

Assume that the origin is a point on the curve, i.e., f(0,0) = 0, so that
a=_0.
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Some preliminaries

We will consider algebraic curves, i.e., curves of the form

F={(x,y) eR?| f(x,y) =0},

where f € R[x, y].
Generally,

f(x,y) = @+ box + b1y + CoX? + C1Xy + CoX® + ...

Assume that the origin is a point on the curve, i.e., f(0,0) = 0, so that
a = 0. Then, for there to be a cusp at the origin, it is necessary, but not
sufficient, for the two partial derivatives to be 0, i.e.,

of of
(0,0)=5.(0,0)=o0.

ox
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Some preliminaries

We will consider algebraic curves, i.e., curves of the form

F={(x,y) eR?| f(x,y) =0},

where f € R[x, y].
Generally,

f(x,y) = @+ box + b1y + CoX? + C1Xy + CoX® + ...

Assume that the origin is a point on the curve, i.e., f(0,0) = 0, so that
a = 0. Then, for there to be a cusp at the origin, it is necessary, but not
sufficient, for the two partial derivatives to be 0, i.e.,

of of

Thus, if there is a cusp at the origin, we have a = by = b; = 0.
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The “definition” of a cusp
Let f(x, y) be a polynomial of the following form:

f(x,y) = cox? + c1xy + Coy? + dox® + di X%y + doxy? + day® + ...
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The “definition” of a cusp
Let f(x, y) be a polynomial of the following form:
f(X,y) = CoX? + c1xy + Coy? + dox® + di X2y + doxy® + day® + . ..

Some sources define a cusp in terms of the coefficients.
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The “definition” of a cusp
Let f(x, y) be a polynomial of the following form:

f(x,y) = cox? + c1xy + Coy? + dox® + di X%y + doxy? + day® + ...
Some sources define a cusp in terms of the coefficients.

Definition

Let F be an algebraic curve defined by a polynomial f as above. If
» at least one of ¢y, ¢y, ¢ is non-zero,
» at least one of dy, dy, @, d3 is non-zero, and
» there is one real solution in m of multiplicity 2 to the polynomial

Co + 1M+ com?,

then somehow there is a cusp at the origin.

C. J. Taylor Lecture 9: Cusps May 2, 2018 11/26



Consider the semicubic parabola, given by the roots of

f(x,y) =y? - x>
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Consider the semicubic parabola, given by the roots of

f(x,y) =y? - x>

We have a= by = by = ¢y = ¢y =0,but c; =1 and ap = 1.
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Consider the semicubic parabola, given by the roots of

f(x,y) = y? = x°.

Wehavea=by=b;=cg=c¢; =0,butcoc =1and dy = —1. The
polynomial
Co+ CiMm+ com? = m?
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Consider the semicubic parabola, given by the roots of

f(x,y) =y? - x>

Wehavea=by=b;=cg=c¢; =0,butcoc =1and dy = —1. The
polynomial
Co+ CiMm+ com? = m?

has a double root m = 0, so there is a cusp at the origin.
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Consider the semicubic parabola, given by the roots of

f(x,y) =y2—x°.
Wehavea=by=by=cy=¢; =0,butcoc =1and dy = —1. The
polynomial

Co+ Cim+ com? = m?

has a double root m = 0, so there is a cusp at the origin.
You may also observe from earlier that the slope of both tangents in
the diagram from earlier approaches 0 as we approach the cusp.
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Let’s rotate the semicubical parabola 30 degrees anticlockwise and
see what happens.
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Let’s rotate the semicubical parabola 30 degrees anticlockwise and
see what happens.
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Let’s rotate the semicubical parabola 30 degrees anticlockwise and
see what happens.

The slope of the tangents now approaches a value of tan 30° = \/Tg
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To rotate the curve about an angle of 6, use the following change of
variables:

(x,y) — (xcos@ + ysin6,ycosd — xsinb)
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To rotate the curve about an angle of 6, use the following change of
variables:

(x,y) — (xcos@ + ysin6,ycosd — xsinb)
Changing the variables in x3 — y? gives

(xcosf + ysinf)® — (ycosb — xsinp)?
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To rotate the curve about an angle of 6, use the following change of
variables:

(x,y) — (xcos@ + ysin6,ycosd — xsinb)
Changing the variables in x3 — y? gives
(xcosf + ysinf)® — (ycosb — xsinp)?

In that case, expanding gives a = by = by = 0, and at least one of the
d;’s is non-zero.
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To rotate the curve about an angle of 6, use the following change of
variables:

(x,y) — (xcosf + ysind,ycosf — xsinf)
Changing the variables in x3 — y? gives
(xcosf + ysinf)® — (ycosb — xsinp)?
In that case, expanding gives a = by = by = 0, and at least one of the

d;’s is non-zero.
Moreover, ¢, = sin® 6, ¢; = —2sin 0 cos 6, ¢, = cos? 6.
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To rotate the curve about an angle of 6, use the following change of
variables:

(x,y) — (xcosf + ysind,ycosf — xsinf)
Changing the variables in x3 — y? gives
(xcosf + ysinf)® — (ycosb — xsinp)?
In that case, expanding gives a = by = by = 0, and at least one of the
d;’s is non-zero.

Moreover, ¢, = sin® 6, ¢; = —2sin 0 cos 6, ¢, = cos? 6.
So the polynomial of interest is

m? cos® 6 — 2msin 6 cos f + sin® 6,
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To rotate the curve about an angle of 6, use the following change of
variables:

(x,y) — (xcosf + ysind,ycosf — xsinf)
Changing the variables in x3 — y? gives
(xcosf + ysinf)® — (ycosb — xsinp)?
In that case, expanding gives a = by = by = 0, and at least one of the
d;’s is non-zero.

Moreover, ¢, = sin® 6, ¢; = —2sin 0 cos 6, ¢, = cos? 6.
So the polynomial of interest is

m? cos® 6 — 2msin 6 cos f + sin® 6,

which has a double root m = tan  provided that cos 6 # 0.
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Somehow, the solution mis the “tangent” at the cusp.
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Another classic example of a cusp is in the cardioid, defined by the

polar equation

r(0) =2(1 — cos?9).

/
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https://en.wikipedia.org/wiki/Cardioid#/media/File:Cardiod_animation.gif

Another classic example of a cusp is in the cardioid, defined by the
polar equation
r(0) =2(1 — cos?9).

yaill

/

\

N~

Substituting X for cos 6 and /x2 + y? for r results in the implicit
representation

f(x,y) = (X2 + y?)2 + 4x(x®> + y?) —4y?> = 0
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https://en.wikipedia.org/wiki/Cardioid#/media/File:Cardiod_animation.gif

Expanding the cardioid polynomial, we get
f(x,y) = —4y® +4x3 + 4xy? + x* + 2x2y2 + y*

Inthiscase,a=by=by=cyg=¢;1=d>r =03 =0, but e, = —4 and
d; = 4.

C. J. Taylor Lecture 9: Cusps May 2, 2018 17 /26



Expanding the cardioid polynomial, we get
f(x,y) = —4y® +4x3 + 4xy? + x* + 2x2y2 + y*

Inthiscase,a=by=by=cyg=¢;1=d>r =03 =0, but e, = —4 and
d; = 4. So the “tangent” is given by the solution to

com? = —4mP =0,

C. J. Taylor Lecture 9: Cusps May 2, 2018 17 /26



Expanding the cardioid polynomial, we get
f(x,y) = —4y® +4x3 + 4xy? + x* + 2x2y2 + y*

Inthiscase,a=by=by=cyg=¢;1=d>r =03 =0, but e, = —4 and
d; = 4. So the “tangent” is given by the solution to

Com? = —4m? =0,

which clearly has a double root m = 0.
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The curve that was just traced out is called the cycloid.
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The curve that was just traced out is called the cycloid. It is
parametrised by

x=r(t—sint)
y =r(1—cost)
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The curve that was just traced out is called the cycloid. It is
parametrised by

x=r(t—sint)
y =r(1—cost)
Proposition
The cycloid is not an algebraic curve. J
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Video: a bike with “triangular” wheels
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https://www.youtube.com/watch?v=BeOS9pG6vjU
https://youtu.be/L5AzbDJ7KYI?t=40
https://www.youtube.com/watch?v=FlvjWpWu99A

Video: a bike with “triangular” wheels

Video: drilling a square hole
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https://www.youtube.com/watch?v=BeOS9pG6vjU
https://youtu.be/L5AzbDJ7KYI?t=40
https://www.youtube.com/watch?v=FlvjWpWu99A

Video: a bike with “triangular” wheels

Video: drilling a square hole

Fun fact: the solution set of the following degree-8 polynomial also has
constant width:

(X2 + y2)* — 45(x2 4 y?)3 — 41283(x? + y?)? + 7950960(x> + y?)
+16(x2 — 3y?)3 + 48(x2 + y?)(x2 — 3y?)?
+ x(x® — 3y?)[16(x® + y?)? — 5544(x? + y?) + 266382] — 720°

Rabinowitz, Stanley (1997). A Polynomial Curve of Constant Width. Missouri Journal of Mathematical Sciences. 9, pp. 23-27.
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https://www.youtube.com/watch?v=BeOS9pG6vjU
https://youtu.be/L5AzbDJ7KYI?t=40
https://www.youtube.com/watch?v=FlvjWpWu99A

Video: a bike with “triangular” wheels

Video: drilling a square hole

Fun fact: the solution set of the following degree-8 polynomial also has
constant width:

(X2 + y2)* — 45(x2 4 y?)3 — 41283(x? + y?)? + 7950960(x> + y?)
+16(x2 — 3y?)3 + 48(x2 + y?)(x2 — 3y?)?
+ x(x® — 3y?)[16(x® + y?)? — 5544(x? + y?) + 266382] — 720°

Rabinowitz, Stanley (1997). A Polynomial Curve of Constant Width. Missouri Journal of Mathematical Sciences. 9, pp. 23-27.

Video: a bike with square wheels
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https://youtu.be/L5AzbDJ7KYI?t=40
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Wheels

Consider an arbitrary parametric equation for a road, f(t) = (x(t), y(t)).
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Hall, Leon; Wagon, Stan (1992). Roads and Wheels. Mathematics Magazine. 65(5), pp 283-301.
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http://stanwagon.com/

Wheels

Consider an arbitrary parametric equation for a road, f(t) = (x(t), y(t)).
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Note that y(t) < 0, x(0) = 0, and x(t) will be increasing.

Hall, Leon; Wagon, Stan (1992). Roads and Wheels. Mathematics Magazine. 65(5), pp 283-301.
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Wheels

Consider an arbitrary parametric equation for a road, f(t) = (x(t), y(1)).

RN

\ NG

~—

Note that y(t) < 0, x(0) = 0, and x(t) will be increasing.
We want to find a wheel that rolls smoothly on the road and whose axis

traces the x-axis.

Hall, Leon; Wagon, Stan (1992). Roads and Wheels. Mathematics Magazine. 65(5), pp 283-301.
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The wheel will be described by a polar function r(6), and 6 = 4(t)
describes the rotation of the wheel at time t.
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The wheel will be described by a polar function r(6), and 6 = 6(t)
describes the rotation of the wheel at time t.
The wheel will be found by solving for

» The initial state: 6(0) = —75.
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The wheel will be described by a polar function r(6), and 6 = 6(t)
describes the rotation of the wheel at time t.
The wheel will be found by solving for

» The initial state: 6(0) = —75.
» The radius condition: r(6(t)) = —y(t).
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The wheel will be described by a polar function r(6), and 6 = 6(t)
describes the rotation of the wheel at time t.
The wheel will be found by solving for

» The initial state: 6(0) = —7.
» The radius condition: r(6(t)) = —y(t).
» The rolling condition:

LY () am [ o (&)
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First differentiating the radius condition, r(6(t)) = —y(t), gives

drdo _ dy
do dt  dt’

C. J. Taylor Lecture 9: Cusps May 2, 2018 24 /26



First differentiating the radius condition, r(6(t)) = —y(t), gives

drdo _ dy
do dt  dt’

Now taking the rolling condition,

[V (@)= [ o (35
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First differentiating the radius condition, r(6(t)) = —y(t), gives

drav _ dy
do dt dt’

Now taking the rolling condition,

/M(fg)i "t = /N

differentiating both sides with respect to t

(G (&) (@) (5)
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First differentiating the radius condition, r(6(t)) = —y(t), gives

drav _ dy
do dt dt’

Now taking the rolling condition,

/M(fg)i "t = /N )

differentiating both sides with respect to t and then squaring gives

(&) + (@) = (&) (o (&)
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First differentiating the radius condition, r(6(t)) = —y(t), gives

drav _ dy
do dt dt’

Now taking the rolling condition,
t]rdx\? ®
LYY (%) a= [ o (&) oo
differentiating both sides with respect to t and then squaring gives
dx\ 2 dy\? do\? 5 dr\?
(&) (&) = (&) (0 (&)
do\? dy\?
(@) o+ (&)
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So, we have

(%) - (5) o
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So, we have

dx \ 2 do\?
(a) :(a) ey’
and since everything is positive,

dt —dt ()

d0_dx 1 % 1
at y(t)
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So, we have

dx \ 2 do\?
(E) :(a) ey’
and since everything is positive,

o _ox 1 ox
at  dt r(0)  adt

\<‘
—~| =
~
N—r

If x(f) = t, then
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So, we have

2 2
2V = (%) rop
dt dt
and since everything is positive,
6 _ax 1 ox 1
atdt r(6) dt y(1t)

If x(f) = t, then
do 1

dat o y(1)
If 6(t) is invertible to t(), then the wheel is given by
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This can also solve the problem: given a wheel, what is the road?
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This can also solve the problem: given a wheel, what is the road?
Assume that x(t) = t, and then consider r(6) = — csc6; a straight line.
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This can also solve the problem: given a wheel, what is the road?
Assume that x(t) = t, and then consider r(6) = — csc6; a straight line.

Solving

ﬁ—L——sine
ax  r(0)
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This can also solve the problem: given a wheel, what is the road?
Assume that x(t) = t, and then consider r(6) = — csc6; a straight line.

Solving

ﬁ—L——sine
ax  r(0)

eventually gives
6(x) = —2arctan e ¥,
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This can also solve the problem: given a wheel, what is the road?
Assume that x(t) = t, and then consider r(6) = — csc6; a straight line.

Solving

ﬁfo—sine
ax  r(9)

eventually gives
6(x) = —2arctan e,

and then plugging it into y(x) = —r(6(x)) gives

y(x) = csc(—2arctane ™) =[...] = —cosh x
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