
Regular double p-algebras (appendix 1)

Christopher J. Taylor

La Trobe University

GA Seminar
April 9 2018

C. J. Taylor Regular double p-algebras April 9 2018 1 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



A graph:

A subgraph:

C. J. Taylor Regular double p-algebras April 9 2018 2 / 23



Subgraph lattices

Let G = 〈V ,E〉 be a graph. The set of all subgraphs of G, ordered by
inclusion, is a bounded distributive lattice, where

〈V1,E1〉 ∨ 〈V2,E2〉 = 〈V1 ∪ V2,E1 ∪ E2〉
〈V1,E1〉 ∧ 〈V2,E2〉 = 〈V1 ∩ V2,E1 ∩ E2〉.

The bounds are given by 0 = 〈∅,∅〉 and 1 = G. The lattice will be
denoted by S(G).

Proposition (Reyes & Zolfaghari, 1996)
Let G be a graph. The lattice S(G) forms a double Heyting algebra.
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Pseudocomplements

A unary operation ¬ on a bounded lattice L is a pseudocomplement
operation if, for every x ∈ L,

¬x = max{z ∈ L | x ∧ z = 0}.

Similarly, a unary operation ∼ is a dual pseudocomplement if it
satisfies

∼x = min{z ∈ L | x ∨ z = 1}.
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Double p-algebras

Definition
A (distributive) double p-algebra is an algebra A = 〈A,∨,∧,¬,∼,0,1〉
such that

1. 〈A,∨,∧,0,1〉 is a bounded (distributive) lattice,
2. ¬ is the pseudocomplement, and,
3. ∼ is the dual pseudocomplement.

Note: a double p-algebra A is Boolean if and only if ¬x = ∼x for all
x ∈ A.

Theorem
Let G be a graph. Then 〈S(G),∪,∩,∅,G〉 is the underlying lattice of a
distributive double p-algebra.
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Pseudocomplements of subgraphs
Take the set complement of the subgraph and abandon the extra
edges. Formally, for a graph G = 〈V ,E〉 and a subgraph H = 〈V ′,E ′〉,

¬H = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉.

↪→
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Dual pseudocomplements of subgraphs
Just add the missing vertices back. Formally, for a graph G = 〈V ,E〉
and a subgraph H = 〈V ′,E ′〉,

∼H = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉.

↪→
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In Boolean lattices, no two elements can share a complement.

This is
not true for pseudocomplements.

↪→
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A compromise

Theorem
Let G be a graph, and let A,B ∈ S(G). If both ¬A = ¬B and ∼A = ∼B
then A = B.

Proof.
Recall that for a subgraph H = 〈V ′,E ′〉,

¬H = 〈V\V ′, {e ∈ E\E ′ | (∀x ∈ e) x ∈ V\V ′}〉 (1)
∼H = 〈V\V ′ ∪ {v ∈ V | (∃e ∈ E\E ′) v ∈ e},E\E ′〉. (2)

If ¬A = ¬B then V\VA = V\VB, so they have the same vertices.
Similarly, if ∼A = ∼B then they have the same edges.

This definitely does not hold for double p-algebras in general.
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An algebra A is congruence-regular if, whenever α, β ∈ Con(A), if
there exists x ∈ A such that x/α = x/β then α = β.

Theorem (Varlet, 1972; Katriňák, 1973)
Let A be a double p-algebra. The following are equivalent :

1. A is congruence-regular ;
2. for all x , y ∈ A, if ¬x = ¬y and ∼x = ∼y, then x = y ;
3. every prime filter of A is minimal or maximal ;
4. A is distributive and A |= x ∧ ∼x ≤ y ∨ ¬y.

Theorem (Katriňák, 1973)
Let A be a double p-algebra. If A is regular, then A is term-equivalent
to a double Heyting algebra via the term

x → y = ¬¬(¬x ∨ ¬¬y) ∧ [∼(x ∨ ¬x) ∨ ¬x ∨ y ∨ ¬y ]

and its dual.
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Theorem (T., 2015)
Every regular double p-algebra embeds into the double p-algebra of
point-preserving substructures of an incidence structure.

Corollary
Let A be a double p-algebra. If A is regular, then A is term-equivalent
to a double Heyting algebra via the term

x → y = ¬x ∨ y ∨ [¬¬(¬x ∨ y) ∧ ∼(x ∨ ¬x)]

and its dual.

Proposition
In every distributive p-algebra, the following identity holds:

¬¬(¬x ∨ ¬¬y) ∧ (z ∨ ¬x ∨ ¬y) ≈ ¬¬(¬x ∨ y) ∧ (z ∨ ¬x).
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Splittings

Definition
A pair of elements (a,b) from a lattice L is a splitting pair if a � b and
↑a ∪ ↓b = L.

Definition
A subdirectly irreducible algebra A in a variety V is a splitting algebra if
there exists a subvariety B of V such that (Var(A),B) is a splitting pair
in the lattice of subvarieties of V.
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From my thesis:

Theorem
The only finite splitting algebras in the variety of double Heyting
algebras are 2 and 3.

Theorem
The only finite splitting algebras in the variety of regular double
p-algebras are 2 and 3.

Lemma (McKenzie, 1972)
If a variety V is congruence-distributive and generated by its finite
members, then every splitting algebra in V is finite.
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Proposition
The variety of double Heyting algebras is generated by its finite
members.

Proof.

Consider an identity s ≈ t that fails in a double Heyting algebra A.
Denote the set of subterms of s or t by Σ. Since s ≈ t fails in A, there
is a tuple a of elements from A such that sA(a) 6= tA(a). Let B be the
sublattice of A generated by the set

Σ(a) := {σA(a) | σ ∈ Σ}.

Then B is a finite distributive lattice; hence it underlies a finite double
Heyting algebra. Moreover, we have sB(a) = sA(a) by construction,
and similarly for t . Hence s ≈ t fails in B as well.
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Finite embeddability property

Definition
A class K of algebras has the finite embeddability property if, for every
algebra A in K and every finite partial subalgebra B of A, there is a
finite algebra C in K such that B embeds as a partial algebra into C.

Proposition
A variety with the finite embeddability property is generated by its finite
members.
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Partial algebras to sets of terms

Let A be a (finitary) algebra and let B be a finite partial subalgebra
of A.

Let X ⊆ A be a set of generators of A.
Then there exists a finite set of terms Σ′ and a finite tuple x of
elements in X such that

B ⊆ Σ′(x) := {σ(x) | σ ∈ Σ′}

Now close Σ′ under subterms and call the result Σ. It is still finite, and
we have

B ⊆ Σ′(x) ⊆ Σ(x).
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Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras.

Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition

For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition

For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition

For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition

For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition
For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}.

Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition
For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition
For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'.

Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition
For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Let P be the dual space of a regular double p-algebra and let Σ′ be a
set of terms in the language of double p-algebras. Define

Σ = {ϕ,∼ϕ,∼∼ϕ | ϕ ∈ Σ′}.

Let a be an appropriately sized tuple of elements from UT(X ).

Definition
For each x ∈ P, let T (x) = {σ ∈ Σ | x ∈ σ(a)}. Define the equivalence
relation ' by

x ' y ⇐⇒ T (x) = T (y).

Let [x ] denote the '-equivalence class of x , and let Q = P/'. Define
the binary relation ≤Q by

[x ] ≤Q [y ] ⇐⇒ (∃x ′ ∈ [x ])(∃y ′ ∈ [y ]) x ′ ≤ y ′.

Our aim: show that 〈Q;≤Q〉 is a finite ordered set such that U(Q)
underlies a regular double p-algebra, and that Σ(a) embeds into U(Q).

C. J. Taylor Regular double p-algebras April 9 2018 21 / 23



Lemma
For all x , y ∈ P, if [x ] ≤Q [y ], then T (x) ⊆ T (y).

Proof.

Let x , y ∈ P and assume [x ] ≤Q [y ]. Then there exists x ′ ∈ [x ] and
y ′ ∈ [y ] such that x ′ ≤ y ′. For all ϕ ∈ T (x ′) = T (x), we have x ′ ∈ ϕ(a),
and since ϕ(a) is an upset, y ′ ∈ ϕ(a). Hence ϕ ∈ T (y ′) = T (y).

Proposition

The structure 〈Q;≤Q〉 is a finite ordered set and every element of Q is
minimal or maximal.

Theorem
The partial algebra Σ(a) embeds as a partial algebra into U(Q).
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Corollary
The variety of regular double p-algebras has the finite embeddability
property ; hence it is generated by its finite members.

Corollary
The only splitting algebras in the variety of regular double p-algebras
are 2 and 3.
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