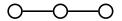
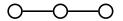
Regular double p-algebras (appendix 1)

Christopher J. Taylor

La Trobe University

GA Seminar April 9 2018

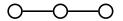




A subgraph:

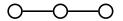
C. J. Taylor

ο

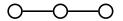


A subgraph:

Ο

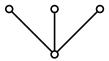


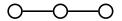
A subgraph:



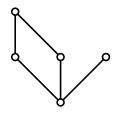
A subgraph:

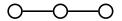
Ο



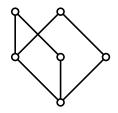


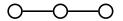
A subgraph:



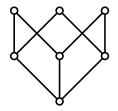


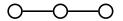
A subgraph:





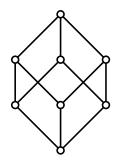
A subgraph:

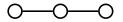




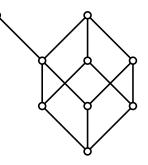
A subgraph:

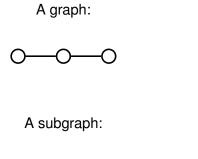
0 0 0

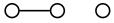


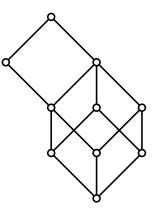


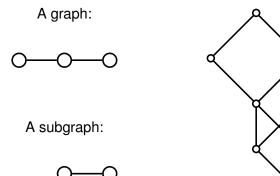
A subgraph:

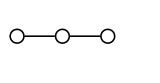






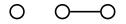


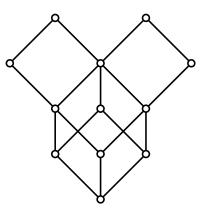




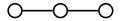
A subgraph:

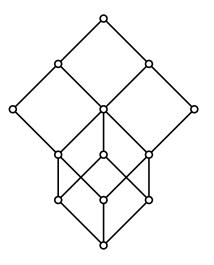
A graph:





A subgraph:





Subgraph lattices

Let $G = \langle V, E \rangle$ be a graph. The set of all subgraphs of *G*, ordered by inclusion, is a bounded distributive lattice, where

$$\langle V_1, E_1 \rangle \lor \langle V_2, E_2 \rangle = \langle V_1 \cup V_2, E_1 \cup E_2 \rangle \langle V_1, E_1 \rangle \land \langle V_2, E_2 \rangle = \langle V_1 \cap V_2, E_1 \cap E_2 \rangle.$$

The bounds are given by $0 = \langle \emptyset, \emptyset \rangle$ and 1 = G. The lattice will be denoted by S(G).

Subgraph lattices

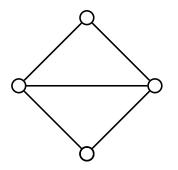
Let $G = \langle V, E \rangle$ be a graph. The set of all subgraphs of *G*, ordered by inclusion, is a bounded distributive lattice, where

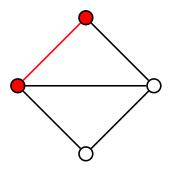
$$\langle V_1, E_1 \rangle \lor \langle V_2, E_2 \rangle = \langle V_1 \cup V_2, E_1 \cup E_2 \rangle \\ \langle V_1, E_1 \rangle \land \langle V_2, E_2 \rangle = \langle V_1 \cap V_2, E_1 \cap E_2 \rangle.$$

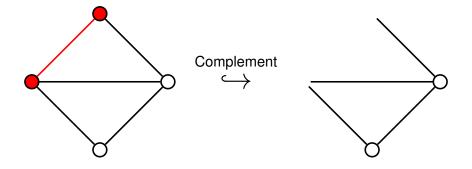
The bounds are given by $0 = \langle \emptyset, \emptyset \rangle$ and 1 = G. The lattice will be denoted by S(G).

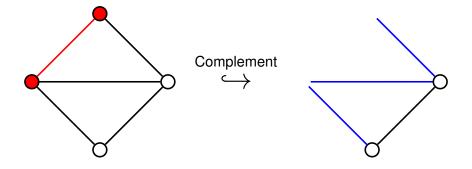
Proposition (Reyes & Zolfaghari, 1996)

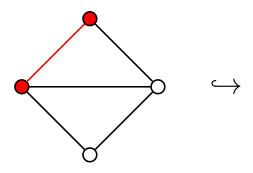
Let G be a graph. The lattice S(G) forms a double Heyting algebra.

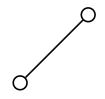


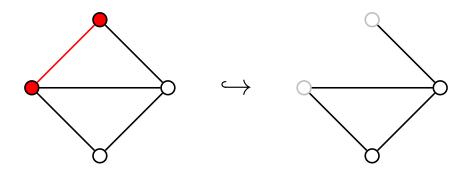


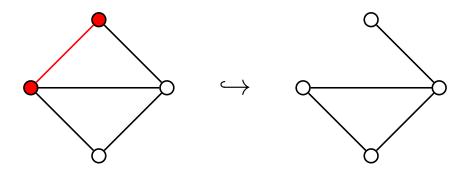












Pseudocomplements

A unary operation \neg on a bounded lattice *L* is a *pseudocomplement* operation if, for every $x \in L$,

$$\neg x = \max\{z \in L \mid x \land z = 0\}.$$

A unary operation \neg on a bounded lattice *L* is a *pseudocomplement* operation if, for every $x \in L$,

$$\neg x = \max\{z \in L \mid x \land z = 0\}.$$

Similarly, a unary operation \sim is a dual pseudocomplement if it satisfies

$$\sim x = \min\{z \in L \mid x \lor z = 1\}.$$

Double p-algebras

Definition

A (distributive) double p-algebra is an algebra $\bm{A}=\langle A,\vee,\wedge,\neg,\sim,0,1\rangle$ such that

- 1. $\langle \textbf{A}, \lor, \land, 0, 1 \rangle$ is a bounded (distributive) lattice,
- 2. \neg is the pseudocomplement, and,
- 3. \sim is the dual pseudocomplement.

Double p-algebras

Definition

A (distributive) double p-algebra is an algebra $\bm{A}=\langle A,\vee,\wedge,\neg,\sim,0,1\rangle$ such that

- 1. $\langle \textbf{A}, \lor, \land, 0, 1 \rangle$ is a bounded (distributive) lattice,
- 2. \neg is the pseudocomplement, and,
- 3. \sim is the dual pseudocomplement.

Note: a double p-algebra **A** is Boolean if and only if $\neg x = \sim x$ for all $x \in A$.

Double p-algebras

Definition

A (distributive) double p-algebra is an algebra $\bm{A}=\langle A,\vee,\wedge,\neg,\sim,0,1\rangle$ such that

- 1. $\langle \textbf{A}, \lor, \land, 0, 1 \rangle$ is a bounded (distributive) lattice,
- 2. \neg is the pseudocomplement, and,
- 3. \sim is the dual pseudocomplement.

Note: a double p-algebra **A** is Boolean if and only if $\neg x = \sim x$ for all $x \in A$.

Theorem

Let G be a graph. Then $\langle S(G), \cup, \cap, \emptyset, G \rangle$ is the underlying lattice of a distributive double p-algebra.

Pseudocomplements of subgraphs

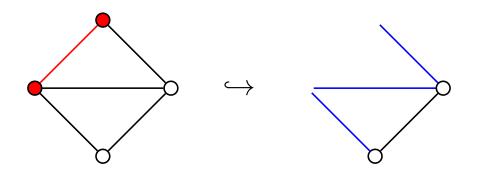
Take the set complement of the subgraph and abandon the extra edges. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$,

$$eg H = \langle V \setminus V', \{ e \in E \setminus E' \mid (\forall x \in e) \ x \in V \setminus V' \} \rangle.$$

Pseudocomplements of subgraphs

Take the set complement of the subgraph and abandon the extra edges. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$,

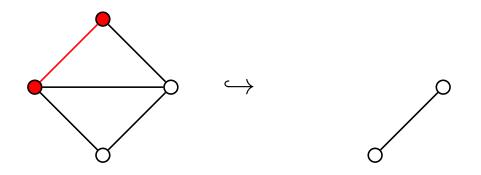
$$eg H = \langle V \setminus V', \{ e \in E \setminus E' \mid (\forall x \in e) \ x \in V \setminus V' \} \rangle$$



Pseudocomplements of subgraphs

Take the set complement of the subgraph and abandon the extra edges. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$,

$$\neg H = \langle V \setminus V', \{ e \in E \setminus E' \mid (\forall x \in e) \ x \in V \setminus V' \} \rangle$$



Dual pseudocomplements of subgraphs

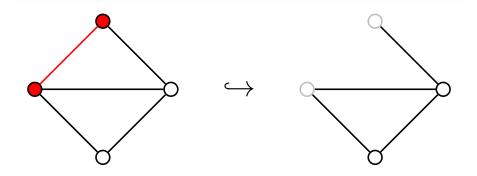
Just add the missing vertices back. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$,

 $\sim H = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$

Dual pseudocomplements of subgraphs

Just add the missing vertices back. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$,

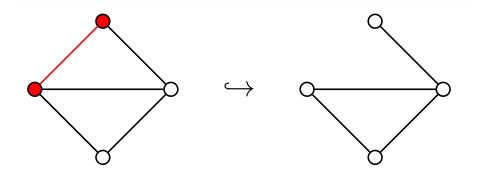
$$\sim H = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$$



Dual pseudocomplements of subgraphs

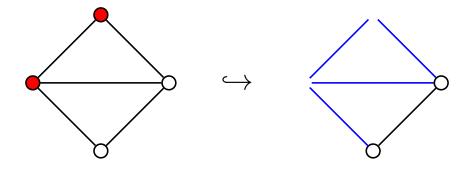
Just add the missing vertices back. Formally, for a graph $G = \langle V, E \rangle$ and a subgraph $H = \langle V', E' \rangle$,

$$\sim H = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$$

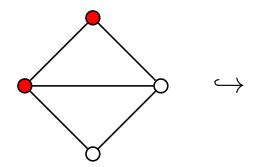


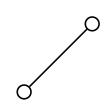
In Boolean lattices, no two elements can share a complement.

In Boolean lattices, no two elements can share a complement. This is not true for pseudocomplements.



In Boolean lattices, no two elements can share a complement. This is not true for pseudocomplements.





Theorem

Let G be a graph, and let $A, B \in S(G)$. If both $\neg A = \neg B$ and $\sim A = \sim B$ then A = B.

Theorem

Let G be a graph, and let $A, B \in S(G)$. If both $\neg A = \neg B$ and $\sim A = \sim B$ then A = B.

Proof.

Recall that for a subgraph $H = \langle V', E' \rangle$,

$$\neg H = \langle \mathbf{V} \setminus \mathbf{V}', \{ \mathbf{e} \in \mathbf{E} \setminus \mathbf{E}' \mid (\forall \mathbf{x} \in \mathbf{e}) \ \mathbf{x} \in \mathbf{V} \setminus \mathbf{V}' \} \rangle$$
(1)
$$\sim H = \langle \mathbf{V} \setminus \mathbf{V}' \cup \{ \mathbf{v} \in \mathbf{V} \mid (\exists \mathbf{e} \in \mathbf{E} \setminus \mathbf{E}') \ \mathbf{v} \in \mathbf{e} \}, \mathbf{E} \setminus \mathbf{E}' \rangle.$$
(2)

Theorem

Let G be a graph, and let $A, B \in S(G)$. If both $\neg A = \neg B$ and $\sim A = \sim B$ then A = B.

Proof.

Recall that for a subgraph $H = \langle V', E' \rangle$,

$$\neg H = \langle \mathbf{V} \setminus \mathbf{V}', \{ \mathbf{e} \in \mathbf{E} \setminus \mathbf{E}' \mid (\forall \mathbf{x} \in \mathbf{e}) \ \mathbf{x} \in \mathbf{V} \setminus \mathbf{V}' \} \rangle$$
(1)

$$\sim H = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$$
(2)

If $\neg A = \neg B$ then $V \setminus V_A = V \setminus V_B$, so they have the same vertices.

Theorem

Let G be a graph, and let $A, B \in S(G)$. If both $\neg A = \neg B$ and $\sim A = \sim B$ then A = B.

Proof.

Recall that for a subgraph $H = \langle V', E' \rangle$,

$$\neg H = \langle \mathbf{V} \setminus \mathbf{V}', \{ \mathbf{e} \in \mathbf{E} \setminus \mathbf{E}' \mid (\forall \mathbf{x} \in \mathbf{e}) \ \mathbf{x} \in \mathbf{V} \setminus \mathbf{V}' \} \rangle$$
(1)

$$\sim H = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$$
(2)

If $\neg A = \neg B$ then $V \setminus V_A = V \setminus V_B$, so they have the same vertices. Similarly, if $\sim A = \sim B$ then they have the same edges.

Theorem

Let G be a graph, and let $A, B \in S(G)$. If both $\neg A = \neg B$ and $\sim A = \sim B$ then A = B.

Proof.

Recall that for a subgraph $H = \langle V', E' \rangle$,

$$\neg H = \langle V \setminus V', \{ e \in E \setminus E' \mid (\forall x \in e) \ x \in V \setminus V' \} \rangle$$
(1)

$$\sim H = \langle V \setminus V' \cup \{ v \in V \mid (\exists e \in E \setminus E') \ v \in e \}, E \setminus E' \rangle.$$
(2)

If $\neg A = \neg B$ then $V \setminus V_A = V \setminus V_B$, so they have the same vertices. Similarly, if $\sim A = \sim B$ then they have the same edges.

This definitely does not hold for double p-algebras in general.

An algebra **A** is *congruence-regular* if, whenever $\alpha, \beta \in \text{Con}(\mathbf{A})$, if there exists $x \in A$ such that $x/\alpha = x/\beta$ then $\alpha = \beta$.

An algebra **A** is *congruence-regular* if, whenever $\alpha, \beta \in \text{Con}(\mathbf{A})$, if there exists $x \in \mathbf{A}$ such that $x/\alpha = x/\beta$ then $\alpha = \beta$.

Theorem (Varlet, 1972; Katriňák, 1973)

Let A be a double p-algebra. The following are equivalent:

- 1. A is congruence-regular;
- 2. for all $x, y \in A$, if $\neg x = \neg y$ and $\sim x = \sim y$, then x = y;
- 3. every prime filter of **A** is minimal or maximal;
- 4. A is distributive and $\mathbf{A} \models x \land \sim x \leq y \lor \neg y$.

An algebra **A** is *congruence-regular* if, whenever $\alpha, \beta \in \text{Con}(\mathbf{A})$, if there exists $x \in A$ such that $x/\alpha = x/\beta$ then $\alpha = \beta$.

Theorem (Varlet, 1972; Katriňák, 1973)

Let **A** be a double p-algebra. The following are equivalent:

- 1. A is congruence-regular;
- 2. for all $x, y \in A$, if $\neg x = \neg y$ and $\sim x = \sim y$, then x = y;
- 3. every prime filter of A is minimal or maximal;
- 4. A is distributive and $\mathbf{A} \models x \land \sim x \leq y \lor \neg y$.

Theorem (Katriňák, 1973)

Let **A** be a double p-algebra. If **A** is regular, then **A** is term-equivalent to a double Heyting algebra via the term

$$x \to y = \neg \neg (\neg x \lor \neg \neg y) \land [\sim (x \lor \neg x) \lor \neg x \lor y \lor \neg y]$$

and its dual.

Theorem (T., 2015)

Every regular double p-algebra embeds into the double p-algebra of point-preserving substructures of an incidence structure.

Theorem (T., 2015)

Every regular double p-algebra embeds into the double p-algebra of point-preserving substructures of an incidence structure.

Corollary

Let **A** be a double p-algebra. If **A** is regular, then **A** is term-equivalent to a double Heyting algebra via the term

$$x \rightarrow y = \neg x \lor y \lor [\neg \neg (\neg x \lor y) \land \sim (x \lor \neg x)]$$

and its dual.

Theorem (T., 2015)

Every regular double p-algebra embeds into the double p-algebra of point-preserving substructures of an incidence structure.

Corollary

Let **A** be a double p-algebra. If **A** is regular, then **A** is term-equivalent to a double Heyting algebra via the term

$$x \rightarrow y = \neg x \lor y \lor [\neg \neg (\neg x \lor y) \land \sim (x \lor \neg x)]$$

and its dual.

Proposition

In every distributive p-algebra, the following identity holds:

$$\neg\neg(\neg x \lor \neg\neg y) \land (z \lor \neg x \lor \neg y) \approx \neg\neg(\neg x \lor y) \land (z \lor \neg x).$$

Splittings

Definition

A pair of elements (a, b) from a lattice L is a *splitting pair* if $a \not\leq b$ and $\uparrow a \cup \downarrow b = L$.

Splittings

Definition

A pair of elements (a, b) from a lattice **L** is a *splitting pair* if $a \not\leq b$ and $\uparrow a \cup \downarrow b = L$.

Definition

A subdirectly irreducible algebra **A** in a variety \mathcal{V} is a *splitting algebra* if there exists a subvariety \mathcal{B} of \mathcal{V} such that $(Var(\mathbf{A}), \mathcal{B})$ is a splitting pair in the lattice of subvarieties of \mathcal{V} .

From my thesis:

Theorem

The only finite splitting algebras in the variety of double Heyting algebras are **2** and **3**.

Theorem

The only finite splitting algebras in the variety of regular double *p*-algebras are **2** and **3**.

From my thesis:

Theorem

The only finite splitting algebras in the variety of double Heyting algebras are **2** and **3**.

Theorem

The only finite splitting algebras in the variety of regular double *p*-algebras are **2** and **3**.

Lemma (McKenzie, 1972)

If a variety \mathcal{V} is congruence-distributive and generated by its finite members, then every splitting algebra in \mathcal{V} is finite.

The variety of double Heyting algebras is generated by its finite members.

Proof.

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**.

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of *s* or *t* by Σ .

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of *s* or *t* by Σ . Since $s \approx t$ fails in **A**, there is a tuple \overline{a} of elements from **A** such that $s^{\mathbf{A}}(\overline{a}) \neq t^{\mathbf{A}}(\overline{a})$.

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of s or t by Σ . Since $s \approx t$ fails in **A**, there is a tuple \overline{a} of elements from **A** such that $s^{\mathbf{A}}(\overline{a}) \neq t^{\mathbf{A}}(\overline{a})$. Let **B** be the *sublattice* of **A** generated by the set

$$\Sigma(\overline{a}) := \{ \sigma^{\mathbf{A}}(\overline{a}) \mid \sigma \in \Sigma \}.$$

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of s or t by Σ . Since $s \approx t$ fails in **A**, there is a tuple \overline{a} of elements from **A** such that $s^{\mathbf{A}}(\overline{a}) \neq t^{\mathbf{A}}(\overline{a})$. Let **B** be the *sublattice* of **A** generated by the set

$$\Sigma(\overline{a}) := \{ \sigma^{\mathbf{A}}(\overline{a}) \mid \sigma \in \Sigma \}.$$

Then **B** is a finite distributive lattice; hence it underlies a finite double Heyting algebra.

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of s or t by Σ . Since $s \approx t$ fails in **A**, there is a tuple \overline{a} of elements from **A** such that $s^{\mathbf{A}}(\overline{a}) \neq t^{\mathbf{A}}(\overline{a})$. Let **B** be the *sublattice* of **A** generated by the set

$$\Sigma(\overline{a}) := \{ \sigma^{\mathbf{A}}(\overline{a}) \mid \sigma \in \Sigma \}.$$

Then **B** is a finite distributive lattice; hence it underlies a finite double Heyting algebra. Moreover, we have $s^{\mathbf{B}}(\overline{a}) = s^{\mathbf{A}}(\overline{a})$ by construction, and similarly for *t*.

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of s or t by Σ . Since $s \approx t$ fails in **A**, there is a tuple \overline{a} of elements from **A** such that $s^{\mathbf{A}}(\overline{a}) \neq t^{\mathbf{A}}(\overline{a})$. Let **B** be the *sublattice* of **A** generated by the set

$$\Sigma(\overline{a}) := \{ \sigma^{\mathbf{A}}(\overline{a}) \mid \sigma \in \Sigma \}.$$

Then **B** is a finite distributive lattice; hence it underlies a finite double Heyting algebra. Moreover, we have $s^{\mathbf{B}}(\overline{a}) = s^{\mathbf{A}}(\overline{a})$ by construction, and similarly for *t*. Hence $s \approx t$ fails in **B** as well.

The variety of double Heyting algebras is generated by its finite members.

Proof.

Consider an identity $s \approx t$ that fails in a double Heyting algebra **A**. Denote the set of subterms of s or t by Σ . Since $s \approx t$ fails in **A**, there is a tuple \overline{a} of elements from **A** such that $s^{\mathbf{A}}(\overline{a}) \neq t^{\mathbf{A}}(\overline{a})$. Let **B** be the *sublattice* of **A** generated by the set

$$\Sigma(\overline{a}) := \{ \sigma^{\mathbf{A}}(\overline{a}) \mid \sigma \in \Sigma \}.$$

Then **B** is a finite distributive lattice; hence it underlies a finite double Heyting algebra. Moreover, we have $s^{B}(\overline{a}) = s^{A}(\overline{a})$ by construction, and similarly for *t*. Hence $s \approx t$ fails in **B** as well.

From my thesis:

Theorem

The only finite splitting algebras in the variety of double Heyting algebras are **2** and **3**.

Theorem

The only finite splitting algebras in the variety of regular double *p*-algebras are **2** and **3**.

Lemma (McKenzie, 1972)

If a variety \mathcal{V} is congruence-distributive and generated by its finite members, then every splitting algebra in \mathcal{V} is finite.

From my thesis:

Theorem

The only *finite* splitting algebras in the variety of double Heyting algebras are **2** and **3**.

Theorem

The only finite splitting algebras in the variety of regular double *p*-algebras are **2** and **3**.

Lemma (McKenzie, 1972)

If a variety \mathcal{V} is congruence-distributive and generated by its finite members, then every splitting algebra in \mathcal{V} is finite.

Finite embeddability property

Definition

A class \mathcal{K} of algebras has the *finite embeddability property* if, for every algebra **A** in \mathcal{K} and every finite partial subalgebra **B** of **A**, there is a *finite* algebra **C** in \mathcal{K} such that **B** embeds as a partial algebra into **C**.

Finite embeddability property

Definition

A class \mathcal{K} of algebras has the *finite embeddability property* if, for every algebra **A** in \mathcal{K} and every finite partial subalgebra **B** of **A**, there is a *finite* algebra **C** in \mathcal{K} such that **B** embeds as a partial algebra into **C**.

Proposition

A variety with the finite embeddability property is generated by its finite members.

Let **A** be a (finitary) algebra and let **B** be a finite partial subalgebra of **A**.

Let **A** be a (finitary) algebra and let **B** be a finite partial subalgebra of **A**. Let $X \subseteq A$ be a set of generators of **A**.

Let **A** be a (finitary) algebra and let **B** be a finite partial subalgebra of **A**. Let $X \subseteq A$ be a set of generators of **A**. Then there exists a finite set of terms Σ' and a finite tuple \overline{x} of elements in *X* such that

$$B \subseteq \Sigma'(\overline{x}) := \{\sigma(\overline{x}) \mid \sigma \in \Sigma'\}$$

Let **A** be a (finitary) algebra and let **B** be a finite partial subalgebra of **A**. Let $X \subseteq A$ be a set of generators of **A**. Then there exists a finite set of terms Σ' and a finite tuple \overline{x} of elements in *X* such that

$${\mathcal B}\subseteq \Sigma'(\overline{x}):=\{\sigma(\overline{x})\mid \sigma\in \Sigma'\}$$

Now close Σ' under subterms and call the result Σ .

Let **A** be a (finitary) algebra and let **B** be a finite partial subalgebra of **A**. Let $X \subseteq A$ be a set of generators of **A**. Then there exists a finite set of terms Σ' and a finite tuple \overline{x} of elements in *X* such that

$$B \subseteq \Sigma'(\overline{x}) := \{ \sigma(\overline{x}) \mid \sigma \in \Sigma' \}$$

Now close Σ' under subterms and call the result Σ . It is still finite, and we have

 $B \subseteq \Sigma'(\overline{x}) \subseteq \Sigma(\overline{x}).$

Let *P* be the dual space of a regular double p-algebra and let Σ' be a set of terms in the language of double p-algebras.

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

Definition

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

Definition

For each $x \in P$, let $T(x) = \{\sigma \in \Sigma \mid x \in \sigma(\overline{a})\}.$

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

Definition

For each $x \in P$, let $T(x) = \{\sigma \in \Sigma \mid x \in \sigma(\overline{a})\}$. Define the equivalence relation \simeq by

$$x \simeq y \iff T(x) = T(y).$$

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

Definition

For each $x \in P$, let $T(x) = \{\sigma \in \Sigma \mid x \in \sigma(\overline{a})\}$. Define the equivalence relation \simeq by

$$x \simeq y \iff T(x) = T(y).$$

Let [x] denote the \simeq -equivalence class of x, and let $Q = P/\simeq$.

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

Definition

For each $x \in P$, let $T(x) = \{\sigma \in \Sigma \mid x \in \sigma(\overline{a})\}$. Define the equivalence relation \simeq by

$$x \simeq y \iff T(x) = T(y).$$

Let [x] denote the \simeq -equivalence class of x, and let $Q = P/\simeq$. Define the binary relation \leq^{Q} by

$$[x] \leq^Q [y] \iff (\exists x' \in [x])(\exists y' \in [y]) \ x' \leq y'.$$

$$\Sigma = \{\varphi, \sim \varphi, \sim \sim \varphi \mid \varphi \in \Sigma'\}.$$

Let \overline{a} be an appropriately sized tuple of elements from $\mathcal{U}^{\mathcal{T}}(X)$.

Definition

For each $x \in P$, let $T(x) = \{\sigma \in \Sigma \mid x \in \sigma(\overline{a})\}$. Define the equivalence relation \simeq by

$$x \simeq y \iff T(x) = T(y).$$

Let [x] denote the \simeq -equivalence class of x, and let $Q = P/\simeq$. Define the binary relation \leq^Q by

$$[x] \leq^{Q} [y] \iff (\exists x' \in [x])(\exists y' \in [y]) \ x' \leq y'.$$

Our aim: show that $\langle Q; \leq^Q \rangle$ is a finite ordered set such that $\mathcal{U}(Q)$ underlies a regular double p-algebra, and that $\Sigma(\overline{a})$ embeds into $\mathcal{U}(Q)$.

For all $x, y \in P$, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

For all $x, y \in P$, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

For all
$$x, y \in P$$
, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

Let $x, y \in P$ and assume $[x] \leq^Q [y]$.

For all
$$x, y \in P$$
, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

Let $x, y \in P$ and assume $[x] \leq^Q [y]$. Then there exists $x' \in [x]$ and $y' \in [y]$ such that $x' \leq y'$.

For all $x, y \in P$, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

Let $x, y \in P$ and assume $[x] \leq^Q [y]$. Then there exists $x' \in [x]$ and $y' \in [y]$ such that $x' \leq y'$. For all $\varphi \in T(x') = T(x)$, we have $x' \in \varphi(\overline{a})$, and since $\varphi(\overline{a})$ is an upset, $y' \in \varphi(\overline{a})$.

For all $x, y \in P$, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

Let $x, y \in P$ and assume $[x] \leq^Q [y]$. Then there exists $x' \in [x]$ and $y' \in [y]$ such that $x' \leq y'$. For all $\varphi \in T(x') = T(x)$, we have $x' \in \varphi(\overline{a})$, and since $\varphi(\overline{a})$ is an upset, $y' \in \varphi(\overline{a})$. Hence $\varphi \in T(y') = T(y)$.

For all $x, y \in P$, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

Let $x, y \in P$ and assume $[x] \leq^Q [y]$. Then there exists $x' \in [x]$ and $y' \in [y]$ such that $x' \leq y'$. For all $\varphi \in T(x') = T(x)$, we have $x' \in \varphi(\overline{a})$, and since $\varphi(\overline{a})$ is an upset, $y' \in \varphi(\overline{a})$. Hence $\varphi \in T(y') = T(y)$.

Proposition

The structure $\langle Q; \leq^Q \rangle$ is a finite ordered set and every element of Q is minimal or maximal.

For all $x, y \in P$, if $[x] \leq^Q [y]$, then $T(x) \subseteq T(y)$.

Proof.

Let $x, y \in P$ and assume $[x] \leq^Q [y]$. Then there exists $x' \in [x]$ and $y' \in [y]$ such that $x' \leq y'$. For all $\varphi \in T(x') = T(x)$, we have $x' \in \varphi(\overline{a})$, and since $\varphi(\overline{a})$ is an upset, $y' \in \varphi(\overline{a})$. Hence $\varphi \in T(y') = T(y)$.

Proposition

The structure $\langle Q; \leq^Q \rangle$ is a finite ordered set and every element of Q is minimal or maximal.

Theorem

The partial algebra $\Sigma(\overline{a})$ embeds as a partial algebra into $\mathcal{U}(Q)$.

Corollary

The variety of regular double *p*-algebras has the finite embeddability property; hence it is generated by its finite members.

Corollary

The variety of regular double p-algebras has the finite embeddability property; hence it is generated by its finite members.

Corollary

The only splitting algebras in the variety of regular double p-algebras are **2** and **3**.